
A Moderately Exponential Time Algorithm for

Full Degree Spanning Tree∗

Serge Gaspers† Saket Saurabh‡ Alexey A. Stepanov§

Abstract

We present a moderately exponential time exact algorithm for the well-
studied Full Degree Spanning Tree problem, an NP-hard variant of
the Spanning Tree problem. Given a graph G, the objective is to find
a spanning tree T of G which maximizes the number of vertices that
have the same degree in T as in G. The problem is motivated by its
application in fluid networks and is basically a graph-theoretic abstraction
of the problem of placing flow meters in fluid networks. We give an exact
algorithm for Full Degree Spanning Tree running in time O(1.9465n).
This adds Full Degree Spanning Tree to a very small list of “non-local
problems”, like Feedback Vertex Set and Connected Dominating
Set, for which non-trivial (non brute force enumeration) exact algorithms
are known.

1 Introduction

The problem of finding a spanning tree of a connected graph arises at various
places in practice and theory, like the analysis of communication or distribution
networks, or modeling problems, and can be solved efficiently in polynomial
time. On the other hand, if we want to find a spanning tree with certain
additional properties, like a maximum number of leaves or minimum maximum
degree, the problem becomes NP-hard. This paper deals with one of the NP-
hard variants of Spanning Tree, namely Full Degree Spanning Tree,
from the viewpoint of moderately exponential time algorithms.

Let T be a spanning tree of a graph G. A vertex has full degree in T if it
has the same degree in T as in G. We say that T is a full degree spanning tree

∗Additional support by the Norwegian Research Council. A preliminary version of this
paper appeared in the proceedings of the 5th Annual Conference on Theory and Applications
of Models of Computation (TAMC 2008) [15]
†Centro de Modelamiento Matemático, Universidad de Chile, 8370459 Santiago de Chile.

E-mail: sgaspers@dim.uchile.cl.
‡Institute of Mathematical Sciences, CIT Campus, Taramani, 600 113 Chennai, India.

E-mail: saket@imsc.res.in.
§Department of Informatics, University of Bergen, N-5020 Bergen, Norway. E-mail:

ljosha@ljosha.org.

1

if it maximizes the number of full degree vertices. The optimization problem
that we consider is the following.

Full Degree Spanning Tree (FDST): Given an undirected connected
graph G = (V,E), find a full degree spanning tree of G.

The FDST problem is motivated by its applications in water distribution and
electrical networks [22, 26, 27, 28]. Pothof and Schut [28] studied this problem
in the context of water distribution networks where the goal is to determine or
control the flows in the network by installing a small number of flow meters. It
turned out that to measure flows in all pipes, it is sufficient to find a full degree
spanning tree T of the network and install flow meters (or pressure gauges) at
each vertex of T that does not have full degree. We refer to [1, 4, 19] for a more
detailed description of various applications of FDST.

The FDST problem has attracted a lot of attention recently and has been
studied extensively from different algorithmic paradigms developed for coping
with NP-hardness. Pothof and Schut [28] studied this problem first and gave a
simple heuristic algorithm. The decision version of the problem, asking whether
a graph has a spanning tree with at least k full degree vertices, was shown to be
NP-complete by Bhatia et al. [1] and by Broersma et al. [4]. Bhatia et al. also
gave an approximation algorithm of factor O(

√
n). On the negative side, they

showed that FDST is hard to approximate within a factor of O(n
1
2−ε), for any

ε > 0, assuming coRP 6= NP , a well known complexity-theoretic hypothesis.
The complexity assumption of this lower bound can be strengthened to P 6= NP
if in the proof of [1], the more recent result by Zuckerman [35] on the non-
approximability of the Maximum Clique problem is used instead of the result
by H̊astad [18]. Guo et al. [17] studied FDST in the realm of parameterized
complexity and observed that the reduction of Bhatia et al. can be used to show
that the decision version of the problem is W[1]-hard. The dual problem has also
been studied in the literature, that is the problem of finding a spanning tree that
minimizes the number k of vertices not having full degree. For the dual version of
the problem, Khuller et al. [19] gave an approximation algorithm of factor 2 + ε
for any fixed ε > 0, and Guo et al. gave a fixed parameter tractable algorithm
running in time 4knO(1). Lokshtanov et al. [24] showed that the analog to
FDST on directed graphs is W[1]-hard and that the dual can be solved in time
5.942knO(1) on directed graphs. Further, Broersma et al. [4] have shown that
FDST can be solved in polynomial time if the input is restricted to graphs
with bounded treewidth and graphs with a bounded asteroidal number. For
interval graphs and cocomparability graphs (which have asteroidal number at
most 2), Broersma et al. further improved the running time. Polynomial time
algorithms were also designed for strongly chordal graphs and directed path
graphs [23]. However, it has been shown that the problem remains NP-hard
for split graphs [4], bipartite planar graphs of maximum degree 5, and planar
graphs of maximum degree 3 [6].

The goal of this paper is to study Full Degree Spanning Tree in the
context of moderately exponential time algorithms, another coping strategy to

2

deal with NP-hardness. We refer to [13, 14, 30, 31, 32, 34] for introductory texts
and surveys on exact exponential time algorithms. They have an old history
[5, 21] but the last few years have seen a renewed interest in the field. This has
led to the advancement of the state of the art on exact algorithms and many new
techniques based on Inclusion-Exclusion, Measure & Conquer and various other
combinatorial tools have been developed to design and analyze exact algorithms
[2, 3, 10, 33]. Branch & Reduce has always been one of the most important tools
in the area but its applicability was mostly limited to ‘local problems’ (where the
decision on one element of the input has direct consequences for its neighboring
elements) like Maximum Independent Set, Sat and various other problems,
until recently. In 2006, Fomin et al. [11] devised an algorithm for Connected
Dominating Set (or Maximum Leaf Spanning Tree) and Razgon [29] for
Feedback Vertex Set combining sophisticated branching and a clever use of
measure (see also [12] and [9]).

In this paper, we give a O(1.9465n) time algorithm for Full Degree Span-
ning Tree, breaking the trivial 2nnO(1) barrier. Our algorithm adheres to this
machinery and adds an important real life problem to a small list of non local
problems which can provably be solved exponentially faster than by brute force
enumeration of all candidate solutions. The running time analysis of the algo-
rithm uses an involved measure, which is a function of the number of vertices
and the number of edges to be added to the spanning tree. In a preliminary
version [15], a running time of O(1.9172n) was claimed. However, that version
presented two correctness issues. First, the reduction rule R6, which was sup-
posed to handle degree 2 vertices, was incorrect. The second issue was that a
recurrence was missing in the program that computed the upper bound on the
running time. We correct the handling of the degree 2 vertices in this paper
and provide a simple Python program in the appendix that we used to verify
the analysis of the running time.

2 Preliminaries

Let G be a graph. We use V (G) and E(G) to denote the vertices and the edges
of G respectively. We simply write V and E if the graph is clear from the
context. For V ′ ⊆ V we define the induced subgraph G[V ′] = (V ′, E′), where
E′ = {uv ∈ E : u, v ∈ V ′}.

Let v ∈ V . We denote by N(v) the neighborhood of v, namely N(v) = {u ∈
V : uv ∈ E}. The closed neighborhood N [v] of v is N(v) ∪ {v}. In the same
way we define N [S] for S ⊆ V as N [S] =

⋃
v∈S N [v] and N(S) = N [S] \ S. We

define the degree of vertex v in G as the number of vertices adjacent to v in G.
Hence the degree of v in G is dG(v) = |{u ∈ V (G) : uv ∈ E(G)}|.

Let G be a graph and G′ be a subgraph of G. A vertex v ∈ V (G′) is a full
degree vertex in G′ if dG(v) = dG′(v). We recall that a full degree spanning tree
is a spanning tree of a connected graph maximizing the number of full degree
vertices. Similarly, we define full degree spanning forest by replacing tree with
forest in the previous definition (the graph need not be connected in this case).

3

A set I ⊆ V is an independent set of G if no two vertices of I are adjacent in G.

3 Algorithm for Full Degree Spanning Tree

In this section we give an exact algorithm for the FDST problem. Let G =
(V,E) denote the input graph on n vertices.

As a basic idea, we use that, given a set of vertices S, we can, in polynomial
time, construct a spanning tree T in which all the vertices of S have full degree,
or show that no such spanning tree exists. Our first observation towards this is
that all the edges incident to the vertices in S, that is

ES = {uv ∈ E such that u ∈ S or v ∈ S } (1)

belong to every subgraph of G in which the vertices of S have full degree. If
(V,ES) has a cycle, then G has no spanning tree in which all the vertices of
S have full degree. Otherwise, our polynomial time algorithm starts with the
forest (V,ES) and then completes this forest into a spanning tree by adding
edges to connect the components of the forest. The last step can be done by
using a slightly modified version of the Spanning Tree algorithm of Kruskal
[20] that we denote poly fdst. This procedure is described in Subsection 3.2. It
uses an idea from Guo et al. [17] that vertices of degree 2 can be removed from
S without compromising the optimality of the solution returned by poly fdst.
In other words, poly fdst builds a spanning tree in which all vertices of S and a
maximum number of vertices in V2 have full degree, where V2 is the set of degree-
2 vertices of V \ S. Moreover, we will see that this remains true when V2 is the
set of vertices that have degree 2 in the subgraph of G to which the reduction
rules of the next subsection have been applied. Therefore, our algorithm may
postpone the decision on degree 2 vertices to the polynomial time procedure.

The exponential part of the algorithm finds a subset of vertices S for which
poly fdst returns a spanning tree with the largest number of full degree ver-
tices.

Our algorithm follows a branching strategy and as a partial solution keeps
a set of vertices S such that (V,ES) is acyclic. The algorithm grows one com-
ponent of the forest (N [S], ES) at a time. The vertices of this component are
denoted by Sa, the active set. We denote S \ Sa by Sb, the inactive set. The
standard branching step chooses a vertex v that could be included in Sa and
then recursively tries to find a solution by including v in Sa and not including v
in S. But when v is not included in S, it cannot be removed from further con-
sideration as cycles involving v might be created later on in (V,ES) by adding
neighbors of v to S. Hence we resort to a coloring scheme for the vertices, which
can also be thought of as a partition of the vertex set of the input graph. At any
point of the execution of the algorithm, the vertices are partitioned as below:

1. Selected S = Sa ∪ Sb: The set of vertices which are decided to be of full
degree. The set Sa corresponds to the active set of vertices which we use
in the current stage of the algorithm. The set Sb is the inactive set of

4

vertices which were decided to be of full degree in an earlier stage of the
algorithm.

2. Discarded D: The set of vertices which are not required to be of full
degree.

3. Postponed P : The subset of vertices of degree 2 for which we leave to
poly fdst the decision which ones become full degree vertices.

4. Undecided U : The set of vertices which are not in S, D or P , that is
those vertices for which the algorithm still needs to make a choice. So,
U = V \ (S ∪D ∪ P).

Next we define a generalized form of the FDST problem based on the above
partition of the vertex set. But before that we need the following definition.

Definition 1 Given a vertex set S ⊆ V , we define the partial spanning forest
of G induced by S as T (S) = (N [S], ES) where ES is defined as in Equation (1).

For our generalized problem, we denote by G = (Sa, Sb, D, P, U,E) the graph
(V,E) with vertex set V = Sa ∪ Sb ∪D ∪ P ∪ U partitioned as above.

Generalized Full Degree Spanning Forest (GFDSF): Given an
instance G = (Sa, Sb, D, P, U,E) such that T (Sa ∪ Sb) is acyclic, T (Sa)
is connected, and no vertex of T (Sb) is adjacent to a vertex in U , the
objective is to find a spanning forest which maximizes the number of
vertices of U ∪ P of full degree under the constraint that all the vertices
in S = Sa ∪ Sb have full degree.

If we start with a graph G, an instance of FDST, with the vertex partition
S = D = P = ∅ and U = V then the problem we will have at every intermediate
step of the recursive algorithm is GFDSF. We say that T is a generalized full
degree spanning tree/forest if it maximizes the number of vertices of U ∪ P
that have full degree under the constraint that all the vertices in S have full
degree. We remark that vertices of D are allowed to have full degree in a valid
solution to GFDSF, but the quality of a solution is only measured with respect
to how many vertices of U ∪ P have full degree in addition to S. Also, note
that a full degree spanning forest of a connected graph can easily be extended
to a full degree spanning tree by adding some edges to connect the connected
components of the forest and that a full degree spanning tree is a full degree
spanning forest.

As suggested earlier our algorithm is based on branching and will have some
reduction rules that can be applied in polynomial time, leading to a refined
partitioning of the vertices. Before we come to the detailed description of the
algorithm, we introduce a few more important definitions. For given sets S, D,
P and U , we say that an edge is

(a) unexplored if one of its endpoints is in U and the other one in U ∪D ∪P ,

5

(b) forced if at least one of its endpoints is in S, and

(c) superfluous if both its endpoints are in D.

The basic step of our algorithm chooses an undecided vertex u ∈ U and considers
two subcases that it solves recursively: either u is selected, that is u is moved
from U to Sa, or u is discarded, that is u is moved from U to D. But the main
idea is to choose a vertex in a way that the connectivity of T (Sa) is maintained
in both recursive calls. To do so we choose u from U ∩ N [N [Sa]]. This brings
us to the following definition.

Definition 2 The vertices in U ∩N [N [Sa]] are called candidate vertices.

On the other hand, if Sa is not empty and there are no candidate vertices, then
set Sb := Sb∪Sa and Sa := ∅. If, thereafter, U is not empty, then the algorithm
starts to grow a new component of the spanning forest.

Now we are ready to describe the algorithm in details. We start with a
procedure for reduction rules in the next subsection and prove their correctness.

3.1 Reduction Rules

Given an instance G = (Sa, Sb, D, P, U,E) of GFDSF, a reduced instance of G
is computed by the following procedure.

Reduce(G = (Sa, Sb, D, P, U,E))

R1 If there is a superfluous edge e, then return Reduce((Sa, Sb, D, P, U,E \
{e})).

R2 If there is a vertex u ∈ D ∪ U such that d(u) = 1, then remove the unique
edge e incident to u and return Reduce((Sa, Sb, D, P, U,E \ {e})).

R3 If there is an undecided vertex u ∈ U such that T (Sa∪{u}) contains a cycle,
then discard u, that is return Reduce((Sa, Sb, D ∪ {u}, P, U \ {u}, E)).

R4 If there is a candidate vertex u that is adjacent to at most one vertex in
U∪D∪P , then select u, and return Reduce((Sa∪{u}, Sb, D, P, U\{u}, E)).

R5 If Sa = ∅ and there exists a vertex u ∈ U of degree 2, then select u and
return Reduce((Sa ∪ {u}, Sb, D, P, U \ {u}, E)).

R6 If there is a candidate vertex u of degree 2 that has a neighbor v in D,
then put u into P , remove the edge uv and return Reduce((Sa, Sb, D, P ∪
{u}, U \ {u}, E \ {{u, v}})).

R7 If there is no candidate vertex and U 6= ∅ then return Reduce((∅, Sa ∪
Sb, D, P, U,E)).

Else return G

6

Now we argue about the correctness of the reduction rules. More precisely,
we prove that there exists a spanning forest of G such that a maximum num-
ber of vertices preserve their degree and the partitioning of the vertices into
the sets S,D, P and U of the graph resulting from a call to Reduce(G =
(Sa, Sb, D, P, U,E)) is respected. Note that the reduction rules are applied in
the order of their appearance.

The correctness of R1 follows from the fact that discarded vertices are not
required to have full degree.

For the correctness of reduction rule R2, consider a vertex u ∈ D ∪ U of
degree 1 with unique neighbor w. Let G′ = (Sa, Sb, D, P, U,E \ {uw}) be the
graph resulting from the application of the reduction rule. Note that the edge
uw is not part of any cycle and that a generalized full degree spanning forest of
G can be obtained from a generalized full degree spanning forest of G′ by adding
the edge uw. As Algorithm poly fdst adds edges to transform the obtained
spanning forest into a spanning tree (poly fdst works with the original input
graph), the edge uw is added to the final solution.

For the correctness of reduction rule R3, it is enough to observe that if for
a subset S ⊆ V , there exists a spanning forest such that all the vertices of S
have full degree, then T (S) is acyclic.

We prove the correctness of R4 and R5 by the following lemmata.

Lemma 3 Let G = (V,E) be a graph and T be a full degree spanning forest for
G. If v ∈ V is a vertex of degree dG(v)− 1 in T , then there exists a full degree
spanning forest T ′ such that v has degree dG(v) in T ′.

Proof: Let u ∈ V be the neighbor of v such that uv is not an edge of T . Note
that both u and v do not have full degree in T , are not adjacent in T , and belong
to the same tree in T . The last assertion follows from the fact that if u and v
belong to two different trees of T then one can add uv to T and obtain a forest
T ′ that has a larger number of full degree vertices, contradicting that T is a full
degree spanning forest. Now, adding the edge uv to T creates a unique cycle
passing through u and v. We obtain the new forest T ′ by removing the other
edge incident to u on the cycle, say uw, w 6= v. So, T ′ = T \ {uw} ∪ {uv}. The
number of full degree vertices in T ′ is at least as high as in T as v becomes a
full degree vertex and at most one vertex, w, could lose the full degree property.

We also need a generalized version of Lemma 3.

Lemma 4 Let G = (Sa, Sb, D, P, U,E) be a graph and T be a generalized full
degree spanning forest for G. Let v ∈ U be a candidate vertex such that its
neighbors in D ∪ P ∪ U are not incident to a forced edge. If v has degree
dG(v) − 1 in T , then there exists a generalized full degree spanning forest T ′

such that v has full degree in T ′.

Proof: The proof is similar to the one of Lemma 3. The only difference is
that we need to show that the vertices of S = Sa ∪ Sb remain of full degree

7

and for that we need to show that all the edges of T (S) remain in T ′. To this
observe that all the edges incident to the neighbors of v in D ∪ P ∪ U in T do
not belong to edges of T (S), that is they are not forced edges. So if uv is the
unique edge incident to v missing in T then we can add uv to T and remove
the other non-forced edge on u from the unique cycle in T ∪ {uv} and get the
desired T ′.

Observe that every vertex of P has degree 0. Therefore, all vertices in U are in
different connected components than the vertices in Sb.

Now consider reduction rule R4. If u is a candidate vertex with unique
neighbor w in D ∪ P ∪ U then (a) u ∈ N(Sa) and (b) all the edges incident to
w are not forced, otherwise reduction rule R2 or R3 would have applied. Now
the correctness of the reduction rule follows from Lemma 4.

To prove the correctness of reduction rule R5, we need to show that there
exists a generalized full degree spanning forest where u has full degree. Suppose
not and let T be any generalized full degree spanning forest of G. Without loss
of generality, suppose that u has degree 1 in T (if u is an isolated vertex in
T , then add one edge incident to u to T ; this does not create any cycle in T
and does not decrease the number of vertices of full degree in T). Let v be the
unique neighbor of u in T . But since Sa = ∅, there are no forced edges incident
to neighbors of u and we can apply Lemma 4 again and conclude.

Reduction rule R6 postpones the decision for certain degree 2 vertices. The
edge uv may be deleted as the decision on this edge is made by the polynomial
time procedure poly fdst. Note that u becomes of degree 1, which triggers
reduction rule R2, removing the other edge incident on u as there exists a
generalized full degree spanning forest containing this edge.

Reduction rule R7 only makes the active set inactive in order to start a new
component of the spanning forest as the current component cannot be grown
any further and is thus correct.

This finishes the correctness proof of the reduction rules. Before we go into
the details of the algorithm we would like to point out that all the reduction
rules preserve the connectivity of T (Sa).

3.2 Algorithm

In this section we describe the algorithm in detail. Given an instance G =
(Sa, Sb, D, P, U,E) of GDPST, the algorithm recursively solves the problem by
choosing a candidate vertex u ∈ U and including u in Sa or in D and then re-
turning as solution the one with a maximum number of full degree vertices. The
algorithm has various cases based on the number of unexplored edges incident
to u.

Algorithm fdst(G), described below, returns a generalized full degree span-
ning tree of G. In particular, it searches for a set S∗, such that Sa ∪ Sb =
S ⊆ S∗ ⊆ S ∪ U , corresponding to (a subset of the) full degree vertices in a
generalized full degree spanning forest. Letting Go denote a copy of the origi-
nal input graph (the algorithm may remove edges from its working copy of the

8

graph), which will be known to the algorithm as a global variable, the procedure
poly fdst returns then a spanning tree of Go in which all the vertices of S∗

and a maximum number of vertices of P have full degree.
We describe the procedure poly fdst now in more details. Initially, all edges

are unweighted. Assign weight 1 to each edge incident to a vertex in S∗ and
to each edge that has been removed by reduction rule R2. To each unweighted
edge incident to a vertex in P , assign weight 2. To each remaining unweighted
edge, assign weight 3. Then compute a minimum weight spanning tree T of
this weighted graph using the algorithm of Kruskal [20]. This algorithm first
adds to T all the edges of T (S) (T (S) is acyclic) and all the edges removed
by R2. After having processed the edges with weight 1, Kruskal’s algorithm
processes edges of weight 2. Each vertex of P has exactly one incident edge
with weight two (see reduction rule R6), no incident edge with weight 3, and
all its incident edges with weight 1 have been removed by R2 (as R4 selects
vertices of degree 2 that are in N(S)). Edges of weight two are used to connect
connected components of the forest consisting of edges of weight one. For each
edge of weight two that is added to T , one vertex of P gets full degree. Finally,
if T is still not connected after having added as many weight-2 edges as possible,
edges of weight 3 (incident to discarded vertices only) are used to connect the
remaining connected components of T .

The description of the algorithm consists of the application of the reduction
rules and a sequence of cases. A case consists of a condition (first sentence) and
a statement to be executed if the condition holds. The first case which applies
is used in the algorithm. Thus, inside a given case, the conditions of all previous
cases are assumed to be false.

Algorithm fdst(G = (Sa, Sb, D, P, U,E))

Replace G by Reduce(G).

Case 1: U is a set of isolated vertices. Select all vertices in U and return
poly fdst(Go, (Sa, Sb ∪ U,D, P, ∅, E)).

Case 2: Sa = ∅. Choose a vertex u ∈ U of degree at least 3. Return the best
solution among fdst((Sa∪{u}, Sb, D, P, U \{u}, E)) and fdst((Sa, Sb, D∪
{u}, P, U \ {u}, E)).

Case 3: There is a candidate vertex u with at least 3 unexplored incident
edges. Make two recursive calls: fdst((Sa ∪ {u}, Sb, D, P, U \ {u}, E))
and fdst((Sa, Sb, D ∪ {u}, P, U \ {u}, E)), and return the best solution.

Case 4: There is a candidate vertex u ∈ N(Sa) with at least one neighbor v in
U and exactly two unexplored incident edges. Make two recursive calls:
fdst((Sa ∪ {u}, Sb, D, P, U \ {u}, E)) and fdst((Sa, Sb, D ∪ {u, v}, P, U \
{u, v}, E)), and return the best solution.

From now on let v1 and v2 denote the discarded neighbors of a can-
didate vertex u (see Figure 1).

9

v1 v2

u w1 w2

S D

U

Figure 1: Illustration of Case 6. Cases 5, 7 and 8 are similar.

Case 5: Either v1 and v2 have a common neighbor x 6= u; or
v1 (or v2) has a neighbor x 6= u that is a candidate vertex; or
v1 (or v2) has a neighbor x of degree 2.
Return the best solution among fdst((Sa∪{u}, Sb, D, P, U \{u}, E)) and
fdst((Sa, Sb, D ∪ {u}, P, U \ {u}, E)).

Case 6: Both v1 and v2 have degree 2. Let w1 and w2 (w1 6= w2) be the other
(different from u) neighbors of v1 and v2 in U , respectively. Make recursive
calls as usual, but also explore all the possibilities for w1 and w2 if u ∈ S.
When u is in S, recurse on all possible ways one can add a subset of A =
{w1, w2} to S. That is make recursive calls fdst((S,D∪{u}, U \ {u}, E))
and fdst((S∪{u}∪X,D∪(A−X), U \({u}∪A), E)) for each independent
set X ⊆ A, and return the best solution.

Case 7: One of {v1, v2} has degree ≥ 3. Let {u,w1, w2, w3} ⊆ N({v1, v2}) and
let A = {w1, w2, w3}. Make recursive calls fdst((Sa, Sb, D ∪ {u}, P, U \
{u}, E)) and fdst((Sa ∪ {u} ∪ X,Sb, D ∪ (A − X), P, U \ ({u} ∪ A), E))
for each independent set X ⊆ A, and return the best solution.

Case 8: Both v1 and v2 have degree ≥ 3. Let {u,w1, w2, w3, w4} ⊆ N({v1, v2})
and let A = {w1, w2, w3, w4}. Make recursive calls fdst((Sa, Sb, D ∪
{u}, P, U \{u}, E)) and fdst((Sa∪{u}∪X,Sb, D∪ (A−X), P, U \ ({u}∪
A), E)) for each independent set X ⊆ A, and return the best solution.

4 Correctness and Time Complexity of the Al-
gorithm

We prove the correctness and the time complexity of Algorithm fdst in the
following theorem.

Theorem 5 Given an input graph G = (Sa, Sb, D, P, U,E) on n vertices such
that T (S) is acyclic, S = Sa∪Sb, and T (Sa) is connected, Algorithm fdst solves
GFDSF in time O(1.9465n).

10

Proof: The correctness of the reduction rules is described in Section 3.1.
To see that to every instance the algorithm applies some reduction or branch-

ing rule, it is sufficient to note that if no reduction rule, nor Cases 1–4 apply,
then every candidate vertex is in N(Sa) and has exactly two neighbors in D:
candidate vertices with at least 3 unexplored incident edges are handled by Case
3, candidate vertices with at most one unexplored incident edge are taken care
of by reduction rule R4, and candidate vertices with exactly two unexplored
incident edges satisfy the condition of reduction rule R6 or Case 4, or belong
to N(Sa) and have two neighbors in D.

The correctness of Case 1 follows, as every isolated vertex belonging to U
has full degree in any spanning forest. The remaining cases, except Case 4, of
Algorithm fdst are branching steps where the algorithm chooses a vertex u ∈ U
and tries both possibilities: u ∈ Sa or u ∈ D. Sometimes the algorithm branches
further by looking at the local neighborhood of u and trying all possible ways
that a subset of the neighbors of u can be added to either Sa or D. Since
all possibilities are tried to add vertices of U to D or Sa in Cases 3 and 5
to 8, these cases are correct and do not need any further justifications. The
correctness of Case 4 requires special attention. Here we use the fact that
there exists a generalized full degree spanning forest, such that either u ∈ S or
u and its neighbor v ∈ U are in D. We prove the correctness of this assertion
by contradiction. Suppose v has full degree and u does not have full degree in
all the generalized full degree spanning forests of G. But since u ∈ N(Sa) and
all the neighbors of u in D ∪ U do not have any incident forced edges, we can
use Lemma 4 to get a generalized full degree spanning forest in which u has full
degree.

Now we move on to the time complexity of the algorithm. The measure of
an instance is generally chosen as a function of its structure, like the number
of vertices, edges or other graph parameters, which change during the recursive
steps of the algorithm. In our algorithm, this change is reflected when vertices
are moved to either S,D or P from U . The second observation is that any
spanning tree on n vertices has at most n− 1 edges and hence when we select a
vertex in S we increase the number of edges in T (S) and decrease the number
of edges we can add to T (S). Finally we also gain when the degree of a vertex
becomes two because reduction rules apply as soon as the degree 2 vertex is
in N(Sa) (R4) or in N(N(Sa)) and has a neighbor in D. (Candidate vertices
in N(N(Sa)) of degree 2 that are adjacent only to vertices in U fall into one
of these two categories once their neighbor in N(Sa) is put in either Sa or D.)
Our measure is precisely a function of these three parameters and is defined as
follows:

µ(G) = η|U2|+ β|U≥3|+ αm′, (2)

where U2 is the subset of undecided vertices of degree 2, U≥3 is the subset of
undecided vertices of degree at least 3, m′ = n − 1 − |E(T (S))| is the number
of edges that can be added to the spanning tree and η = 0.5, β = 0.722 and
α = 0.23887 are numerically obtained constants. These constants have been

11

optimally computed by a convex optimization program [16] (see also [14]). We
write µ instead of µ(G) if G is clear from the context. We prove that the problem
can be solved for an instance of size µ in time O(2µ). As µ ≤ 0.96087n, the
final running time of the algorithm will be 20.96087n ·nO(1) = 1.9464..n ·nO(1) =
O(1.9465n). Denote by P [µ] the maximum number of times the algorithm is
called recursively on a problem of size µ (i. e. the number of leaves in the search
tree). Then the running time T (µ) of the algorithm is bounded by P [µ] · nO(1)

because in any node of the search tree, the algorithm executes only a polynomial
number of steps. We use induction on µ to prove that P [µ] ≤ 2µ. Then
T (µ) = 2µ · nO(1) = O(1.9465n). Clearly, P [0] = 1. Suppose that P [k] ≤ 2k for
every k < µ and consider a problem of size µ.

Case 2: In this case, the number of vertices in U≥3 decreases by one in both
recursive calls and the number of edges in T (S) increases by at least 3 in
the first recursive call. Thus,

P [µ] ≤ P [µ− β − 3α] + P [µ− β]

≤ 2µ−β−3α + 2µ−β ≤ 2µ.

Case 3: This case has the same recurrence as Case 2 as the number of vertices
in U≥3 decreases by one in both recursive calls and the number of edges
in T (S) increases by at least 3 in the first recursive call.

Case 4: When the algorithm adds u to S, the number of vertices in U≥3 de-
creases by one and the number of edges in T (S) increases by 2 while in
the other case, |U≥3| decreases by two or |U2| and |U≥3| both decrease by
one. So we get:

P [µ] ≤ P [µ− β − 2α] + P [µ− 2β], and

P [µ] ≤ P [µ− β − 2α] + P [µ− η − β].

Case 5: When the algorithm adds u to S, reduction rule R3 or R6 applies to
x. We obtain the following recurrences, based on the degree of x:

P [µ] ≤ P [µ− η − β − 2α] + P [µ− β], and

P [µ] ≤ P [µ− 2β − 2α] + P [µ− β].

Case 6: In this case we distinguish two subcases based on the degrees of w1

and w2. Our first subcase is when either w1 or w2 has degree 3 and the
other subcase is when both w1 and w2 have degree at least 4. (Note that
because of Case 4, v1 and v2 do not have a common neighbor and do
not have a neighbor of degree 2.) Suppose w1 has degree 3. When the
algorithm adds u to D, the edges uv1 and uv2 are removed (R1), the
degree of v1 is reduced to 1 and then reduction rule R2 is applied and
decreases the degree of w1 to 2. Thus, µ decreases by 2β − η in this

12

subcase. The analysis of the remaining branches is standard and we get
the following recurrence:

P [µ] ≤ P [µ−3β−2α] + 2P [µ−3β−5α] +P [µ−3β−8α] +P [µ−2β+η].

For the other subcase we get the following recurrence:

P [µ] ≤ P [µ− 3β − 2α] + 2P [µ− 3β − 6α] + P [µ− 3β − 10α] + P [µ− β].

Case 7: This case is similar to Case 6. Without loss of generality, suppose v1
has degree 2 and has w1 as neighbor. If w1 has degree 3, then it becomes
of degree 2 when u is discarded. Thus, we obtain the recurrence

P [µ] ≤ P [µ− 4β − 2α] + 3P [µ− 4β − 5α] + 3P [µ− 4β − 8α] +

P [µ− 4β − 11α] + P [µ− 2β + η].

On the other hand, if w1 has degree at least 4, at least one more edge is
added to the spanning forest each time w1 is put into Sa and we obtain
the recurrence

P [µ] ≤ P [µ− 4β − 2α] + 2P [µ− 4β − 5α] + P [µ− 4β − 6α] +

P [µ− 4β − 8α] + 2P [µ− 4β − 9α] + P [µ− 4β − 12α] +

P [µ− β].

Case 8: This case easily gives the recurrence

P [µ] ≤ P [µ− 5β − 2α] + 4P [µ− 5β − 5α] + 6P [µ− 5β − 8α] +

4P [µ− 5β − 11α] + P [µ− 5β − 14α] + P [µ− β].

In each of these recurrences, P [µ] ≤ 2µ which completes the proof of the
theorem.

The bottleneck of the analysis is the recurrence in Case 8. Therefore, an
improvement of this case would lead to a faster algorithm.

We provide a Python program in the appendix to verify that the values for
η, β and α satisfy all the recurrences.

5 Conclusion

In this paper we have given an exact algorithm for the Full Degree Spanning
Tree problem. The most important feature of our algorithm is the way we ex-
ploit connectivity arguments to reduce the size of the graph in the recursive steps
of the algorithm. We think that this idea of combining connectivity while devel-
oping Branch & Reduce algorithms could be useful for various other non-local
problems and in particular for other NP-complete variants of the Spanning

13

Tree problem.1 Although the theoretical bound we obtained for our algorithm
seems to be only slightly better than a brute-force enumeration algorithm, prac-
tice shows that Branch & Reduce algorithms perform usually better than the
running time proved by a worst case analysis of the algorithm. Therefore we
believe that this algorithm, combined with good heuristics, could be useful in
practical applications.

In a preliminary version of this paper [15], we mentioned the Minimum
Maximum Degree Spanning Tree problem, where, given an input graph G,
the objective is to find a spanning tree T of G such that the maximum degree
of T is minimized. We asked whether there exists a 2nnO(1) time algorithm for
this problem. This question has been answered by Nederlof [25] who designed
a polynomial-space O(2n) algorithm using Möbius inversion.

Acknowledgments

We thank Henning Fernau, Fedor V. Fomin and Daniel Raible for useful discus-
sions on a preliminary version of the presented algorithm.

References

[1] R. Bhatia, S. Khuller, R. Pless, Y. J. Sussmann, The full degree spanning
tree problem, Networks 36(4): 203–209, (2000).

[2] A. Björklund, T. Husfeldt, M. Koivisto, Set partitioning via inclusion-
exclusion, SIAM J. Comput. 39(2): 546-563, (2009).

[3] A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto, Fourier meets Möbius:
Fast subset convolution, in the proceedings of STOC 2007, 67–74, (2007).

[4] H. Broersma, O. R. Koppius, H. Tuinstra, A. Huck, T. Kloks, D. Kratsch,
H. Müller, Degree-preserving trees, Networks 35(1): 26–39, (2000).

[5] N. Christofides, An algorithm for the chromatic number of a graph, Com-
puter Journal 14(1): 38–39, (1971).

[6] P. Damaschke, Degree-preserving spanning trees in small-degree graphs,
Discrete Mathematics 222(1–3): 51–60, (2000).

[7] H. Fernau, S. Gaspers, D. Raible, Exact and Parameterized Algorithms for
Max Internal Spanning Tree, in the proceedings of WG 2009, LNCS 5911,
100–111, (2009).

[8] F. V. Fomin, S. Gaspers, A. V. Pyatkin, Finding a minimum feedback
vertex set in time O(1.7548n), in the proceedings of IWPEC 2006, LNCS
4169, 184–191, (2006).

1Indeed, connectivity arguments used in conjunction with Measure & Conquer have re-
cently been used in [7] to design an algorithm finding a spanning tree with a maximum
number of internal vertices in graphs with maximum degree at most 3.

14

[9] F. V. Fomin, S. Gaspers, A. V. Pyatkin, I. Razgon, On the minimum feed-
back vertex set problem: Exact and enumeration algorithms, Algorithmica
52(2): 293–307, (2008).

[10] F. V. Fomin, F. Grandoni, D. Kratsch, A measure & conquer approach
for the analysis of exact algorithms, Journal of the ACM 56(5), Article 25:
1–32, (2009).

[11] F. V. Fomin, F. Grandoni, D. Kratsch, Solving connected dominating set
faster than 2n, in the proceedings of FSTTCS 2006, LNCS 4337, 152–163,
(2006).

[12] F. V. Fomin, F. Grandoni, D. Kratsch, Solving connected dominating set
faster than 2n, Algorithmica 52(2): 153–166, (2008).

[13] F. V. Fomin, F. Grandoni, D. Kratsch, Some new techniques in design
and analysis of exact (exponential) algorithms, Bulletin of the EATCS 87:
47–77, (2005).

[14] S. Gaspers, Exponential Time Algorithms: Structures, Measures, and
Bounds, PhD thesis, University of Bergen, Norway (2008).

[15] S. Gaspers, S. Saurabh, A. A. Stepanov, A moderately exponential time
algorithm for full degree spanning tree, in the proceedings of TAMC 2008,
LNCS 4978, 479–489, (2008).

[16] S. Gaspers, G. B. Sorkin, A universally fastest algorithm for Max 2-Sat,
Max 2-CSP, and everything in between, in the proceedings of SODA 2009,
SIAM, 606–615, (2009).

[17] J. Guo, R. Niedermeier, S. Wernicke, Fixed-parameter tractability results
for full-degree spanning tree and its dual, Networks 56(2): 116–130, (2010).

[18] J. H̊astad, Clique is Hard to Approximate within n to the power 1-epsilon,
Acta Mathematica 182: 105-142, (1999).

[19] S. Khuller, R. Bhatia, R. Pless, On local search and placement of meters
in networks, SIAM Journal of Computing 32(2): 470–487, (2003).

[20] J. B. Kruskal, On the shortest spanning subtree and the traveling salesman
problem, in the proceedings of the American Mathematical Society 7: 48–
50, (1956).

[21] E. L. Lawler, A note on the complexity of the chromatic number problem,
Information Processing Letters 5(3): 66–67, (1976).

[22] M. Lewinter, Interpolation theorem for the number of degree-preserving
vertices of spanning trees, IEEE Transaction Circ. Syst. 34: 205, (1987).

15

[23] Ching-Chi Lin, Gerard J. Chang, Gen-Huey Chen, The degree-preserving
spanning tree problem in strongly chordal and directed path graphs, Net-
works, to appear (available online).

[24] D. Lokshtanov, V. Raman, S. Saurabh, S. Sikdar, On the directed degree-
preserving spanning tree problem, in the proceedings of IWPEC 2009,
LNCS 5917, 276–287, (2009).

[25] J. Nederlof, Fast polynomial-space algorithms using Möbius inversion: Im-
proving on steiner tree and related problems, in the proceedings of ICALP
2009, LNCS 5555, 713–725, (2009).

[26] L. E. Ormsbee, Implicit network calibration, Journal of Water Resources,
Planning and Management, 115(2): 243–257, (1989).

[27] L. E. Ormsbee and D. J. Wood, Explicit pipe network calibration, Journal
of Water Resources, Planning and Management, 112(2): 166–182, (1986).

[28] I. W. M. Pothof and J. Schut, Graph-theoretic approach to identifiability
in a water distribution network, Memorandum 1283, Universiteit Twente,
(1995).

[29] I. Razgon, Exact computation of maximum induced forest, in the proceed-
ings of SWAT 2006, LNCS 4059, 160–171, (2006).

[30] S. Saurabh, Exact Algorithms for Optimization and Parameterized Ver-
sions of some graph theoretic problems, PhD thesis, Homi Bhabha National
Institute, India (2008).

[31] U. Schöning, Algorithmics in exponential time, in the proceedings of
STACS 2005, LNCS 3404, 36–43, (2005).

[32] Alexey A. Stepanov, Exact algorithms for hard listing, counting and deci-
sion problems, PhD thesis, University of Bergen, Norway (2008).

[33] J. M. M. van Rooij, J. Nederlof, T. C. van Dijk, Inclusion/exclusion meets
measure and conquer, in the proceedings of ESA 2009, LNCS 5757, 554–
565, (2009).

[34] G. J. Woeginger, Exact Algorithms for NP-Hard Problems: A Survey, in
the proceedings of AUSSOIS 2001, 185-208, (2001).

[35] D. Zuckerman, Linear Degree Extractors and the Inapproximability of
Max Clique and Chromatic Number, Theory of Computing 3(1): 103–128,
(2007).

16

Appendix: Program to Check the Analysis

weights

alpha = 0.23887

beta = 0.722

eta = 0.5

case 2

print 2**(-beta-3*alpha) + 2**(-beta) < 1

case 3

case 4

print 2**(-beta-2*alpha) + 2**(-2*beta) < 1

print 2**(-beta-2*alpha) + 2**(-eta-beta) < 1

case 5

print 2**(-eta-beta-2*alpha) + 2**(-beta) < 1

print 2**(-2*beta-2*alpha) + 2**(-beta) < 1

case 6

print 2**(-3*beta-2*alpha) + 2*2**(-3*beta-5*alpha)

+ 2**(-3*beta-8*alpha) + 2**(-2*beta+eta) < 1

print 2**(-3*beta-2*alpha) + 2*2**(-3*beta-6*alpha)

+ 2**(-3*beta-10*alpha) + 2**(-beta) < 1

case 7

print 2**(-4*beta-2*alpha) + 3*2**(-4*beta-5*alpha)

+ 3*2**(-4*beta-8*alpha) + 2**(-4*beta-11*alpha)

+ 2**(-2*beta+eta) < 1

print 2**(-4*beta-2*alpha) + 2*2**(-4*beta-5*alpha)

+ 2**(-4*beta-6*alpha) + 2**(-4*beta-8*alpha)

+ 2*2**(-4**beta-9*alpha) + 2**(-4*beta-12*alpha)

+ 2**(-beta) < 1

case 8

print 2**(-5*beta-2*alpha) + 4*2**(-5*beta-5*alpha)

+ 6*2**(-5*beta-8*alpha) + 4*2**(-5*beta-11*alpha)

+ 2**(-5*beta-14*alpha) + 2**(-beta) < 1

17

