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Abstract. We study the existence and asymptotic convergence when t → +∞ for the trajectories
generated by

∇2f(u(t), ε(t))u̇(t) + ε̇(t)
∂2f

∂ε∂x
(u(t), ε(t)) +∇f(u(t), ε(t)) = 0

where {f(·, ε)}ε>0 is a parametric family of convex functions which approximates a given convex
function f we want to minimize, and ε(t) is a parametrization such that ε(t) → 0 when t → +∞.
This method is obtained from the following variational characterization of Newton’s method

(P ε
t ) u(t) ∈ Argmin{f(x, ε(t))− e−t〈∇f(u0, ε0), x〉 : x ∈ H}

where H is a real Hilbert space. We find conditions on the approximating family f(·, ε) and the
parametrization ε(t) to ensure the norm convergence of the solution trajectories u(t) towards a par-
ticular minimizer of f . The asymptotic estimates obtained allow us to study the rate of convergence
as well. The results are illustrated through some applications to barrier and penalty methods for
linear programming, and to viscosity methods for an abstract non-coercive variational problem.
Comparisons with the steepest descent method are also provided.
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1. Introduction. Newton’s method for solving a smooth optimization problem
on a real Hilbert space H

(P ) min{f(x) : x ∈ H},

is based on sequentially minimizing the quadratic expansion of f , that is to say, the
method recursively computes

uk+1 = uk −∇2f(uk)−1∇f(uk).(1)

It is well known that under suitable assumptions (f ∈ C3 and ∇2f(x̂) positive definite
at a local minimizer x̂) and starting sufficiently close to x̂, the iterative scheme (1)
is well defined and converges to x̂ quadratically: |uk+1 − x̂| ≤ C|uk − x̂|2. However,
when the method is far from the solution there is no guarantee of convergence and
one must introduce an appropriate step size λk > 0, leading to

uk+1 − uk

λk
= −∇2f(uk)−1∇f(uk),

which can be interpreted as an explicit discrete scheme for the continuous Newton’s
method,

∇2f(u(t))u̇(t) +∇f(u(t)) = 0.(2)
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It is easy to check that every solution of (2) satisfies

d

dt
[∇f(u(t))] = −∇f(u(t))

and therefore

∇f(u(t))− e−t∇f(u0) = 0.(3)

When the function f is convex, the latter is equivalent to

u(t) ∈ Argmin{f(x)− e−t〈∇f(u0), x〉 : x ∈ H}(4)

providing a variational characterization for the Newton trajectory u(t) which does not
require f to be of class C2 nor to have a nonsingular Hessian, and which makes sense
even for non smooth f ’s (replace∇f(u0) with any u∗0 ∈ ∂f(u0)). We consider this non-
smooth extension of Newton’s method in §3, proving that u(t) is a descent trajectory
for f which is defined for all t ≥ 0 (an interesting result even in the smooth case).
Moreover, when f is strongly convex, we establish an exponential rate of convergence
for u(t) towards the unique minimizer of f .

When the function f is not strongly convex, and also when it presents an irregular
behavior because of non-smoothness or when it takes the value +∞ because of implicit
constraints, a classical approach is to replace f by a sequence of better behaved para-
metric approximations (penalty methods, Tikhonov regularization, viscosity methods,
etc.). More precisely, consider the one-parameter family of problems

(P ε) min{f(x, ε) : x ∈ H}

where for each ε > 0 the function f(·, ε) is a closed proper convex approximate con-
verging to f when ε → 0. Numerical methods based on such parametric approximation
schemes consist in solving (P ε) for an appropriate sequence εk converging to 0. When
f(·, ε) is sufficiently smooth, a common practice is to use Newton’s method for sol-
ving (P εk) up to a prescribed accuracy and then proceed to the next iteration with
parameter εk+1.

Because of the usual increasing ill-conditioning of the Hessian matrix of the
approximating function f(·, ε), the convergence of the overall method requires a care-
ful selection of the starting point for the Newton’s iterations as well as the sequence of
parameters εk, choices which are strongly interdependent. Unfortunately, no general
theory is available in order to guide these choices. With the aim of contributing to
this issue, in §4 we consider the question in the simpler setting of a continuous method
coupling Newton’s method with approximation schemes.

We observe that there is no standard way of coupling Newton’s method with an
approximation scheme. Possibly, the most straightforward alternative would be to
consider the non-autonomous differential equation

∇2f(u(t), ε(t))u̇(t) +∇f(u(t), ε(t)) = 0

where the parameter function ε(t) is a priori chosen so that it decreases to 0 when
t → +∞. However, there is no reason for this method to be the most appropriate
(not even the most natural) way of efficiently combining Newton’s method with an
approximation scheme. Taking into account the variational characterization (4) we
study in §4 a different generalization, namely

u(t) ∈ Argmin{f(x, ε(t))− e−t〈∇f(u0, ε0), x〉 : x ∈ H}.(5)
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In the smooth case, this approach corresponds to the differential equation

∇2f(u(t), ε(t))u̇(t) + ε̇(t)
∂2f

∂ε∂x
(u(t), ε(t)) +∇f(u(t), ε(t)) = 0

whose associated vector field combines a Newton direction with an extrapolation
term that specifically takes into account the rate of change in the objective function
t → f(·, ε(t)).

We study the existence of solutions for (5) as well as their asymptotic behavior.
In a general setting, we obtain a weak condition on the parametrization ε(t) ensur-
ing the asymptotic convergence of the solution trajectories u(t) towards a particular
solution of the original problem (P ), giving at the same time an estimate of the rate
of convergence. We illustrate the general results through some examples in the set-
ting of barrier and penalty methods for linear programming, as well as for Tikhonov
regularization methods.

We compare our results with those obtained for the steepest descent method (see
[3]). To this end we include a short discussion of this method in the preliminary
section §2, for which we provide a new convergence proof for the non-parametric case.

In order to handle with the problem of the increasing ill-conditioning of Hessian
operator of the parametric approximation, we shall see in §5 how in certain cases an
appropriate rescaling of the approximate problem may be used to obtain an uniform
strongly convex approximate scheme.

2. Preliminaries.

2.1. Basic assumptions. Throughout this paper we shall consider an abstract
optimization problem of the form

(P ) min{f(x) : x ∈ H}

where H is a real Hilbert space and f : H → IR ∪ {+∞} is a closed proper convex
function. The set of optimal solutions of (P ) is denoted Argmin f and we assume
throughout that

(H0) the optimal set Argmin f is nonempty and bounded.

This holds for instance when f is coercive (i.e. f has bounded level sets). We
recall that according to Moreau’s theorem, the latter is equivalent to finiteness and
continuity of the Fenchel conjugate f∗ at x∗ = 0.

We say that f is strongly convex if there exists β > 0 such that

f(x) + 〈x∗, y − x〉+
β

2
|y − x|2 ≤ f(y),

for all x, y ∈ H and x∗ ∈ ∂f(x). Equivalently, f is strongly convex when its sub-
differential operator is strongly monotone, that is to say, there exists β > 0 such
that

(H1) if x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y) then 〈x∗ − y∗, x− y〉 ≥ β|x− y|2

If f is strongly convex then f is strictly convex and coercive. In particular, there exists
a unique point x̂ solution of (P ). A weaker condition is the strong monotonicity over
bounded sets,

(H2)
∀K > 0, ∃βK > 0 s.t. ∀x, y ∈ B(0,K), if x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y)

then 〈x∗ − y∗, x− y〉 ≥ βK |x− y|2
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We remark that in this case f is also strictly convex but may fail to satisfy (H0). As a
matter of fact, in this case there is no guarantee of existence of an optimal solution. In
the finite dimensional case, if f ∈ C2(IRn; IR) is such that the Hessian matrix ∇2f(x)
is positive definite for all x ∈ IRn, then (H2) is satisfied and the parameter βK is a
lower bound for the eigenvalues of the matrix ∇2f(x) over B(0,K).

Together with the original problem (P ) we shall consider the parametric family

(P ε) min{f(x, ε) : x ∈ H}

where for each ε > 0, f(·, ε) is a closed proper convex function approximating f .
Very often the function f(·, ε) may be chosen so that it enjoys good properties such
as coercivity and strong convexity and therefore the approximate problem (P ε) is
well posed in existence and uniqueness. We shall assume throughout that (P ε) has a
unique solution which we denote x(ε), and more precisely we suppose that

(H3)
there exists a unique path x(ε) of optimal solutions of (P ε) which
converge in norm towards an optimal point x̂ ∈ Argmin f when ε → 0.

Variational notions of convergence for sequences of functions provide an appro-
priate setting for studying the convergence of the optimal solutions of approximate
schemes as the previous one. For instance, assuming that the following Mosco-epi-
limit holds

f = epi− lim
ε→0

f(·, ε),

and under appropriate compacity assumptions, the optimal value min f(·, ε) converges
to min f and every limit point of the optimal path {x(ε) : ε → 0} is an optimal solution
of (P ). The latter does not ensure the convergence of the optimal path unless (P ) has
a unique solution. However, with a more specific analysis, the validity of (H3) has been
established for many approximate schemes: for viscosity approximation methods see
Tikhonov and Arsenine [16], Attouch [1] and references therein; for interior-point and
penalty methods in convex and linear programming see Megiddo [14], Gonzaga [12],
Cominetti and San Martin [9], Fiacco [10] and Auslender, Cominetti and Haddou
[5]; for an abstract approach based on epi-convergence and scaling see Attouch [2]
and Torralba [17], as well as §5. In all these cases, the limit point x̂ has remarkable
variational properties which make its computation interesting by its own.

2.2. Steepest descent method. For the sake of comparison with the results to
be presented for the Newton method, we briefly recall in this section the convergence
properties of the steepest descent method for the problem (P ) as well as its coupling
with the approximate scheme (P ε).

Let us begin with the steepest descent differential inclusion

(SD;u0)
{

u̇(t) + ∂f(u(t)) 3 0
u(0) = u0.

An absolutely continuous function u : [0,+∞) → H is a solution of (SD;u0) if
u(0) = u0 and the above inclusion is satisfied almost everywhere in [0,+∞). It is
a classical result that when the minimum of f is attained, every solution u(t) of
(SD;u0), weakly converges to an element u∞ ∈ Argmin f as t → +∞ (see Brézis
[6, 7], Bruck [8]). When (P ) has multiple optimal solutions, the limit point may
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depend on the initial condition u0 and it may be difficult to characterize (see Lemaire
[13] for results along these lines).

When f is strongly convex, it is possible to estimate the rate of convergence of the
trajectory u(t) (see Brézis [6, Theorem 3.9]). In the following proposition, we present
a slight variant of this result which assumes only the strong convexity over bounded
sets, and which also provides an estimate for the rate of convergence of the function
values.

Proposition 2.1. Let f be a coercive convex function satisfying (H2), and let
x̂ be the unique minimizer of f . If u : [0,+∞) → H is a solution of (SD;u0), then
there exists β > 0 such that for all t > 0,

f(u(t))−min f ≤ (f(u0)−min f)e−βt,

and

|u(t)− x̂| ≤
√

2
β

(f(u0)−min f)e−
β
2 t.

Proof. Let v(t) := f(u(t)) −min f . It is known [6, Theorem 3.6 and lemma 3.3]
that when

u0 ∈ domf = {x ∈ H : f(x) < +∞}

then f(u(t)) is an absolutely continuous function. Moreover, we have

d

dt
f(u(t)) =< x∗, u̇(t) >

for all x∗ ∈ ∂f(u(t)) and almost everywhere in [0,+∞). In particular we obtain
v̇(t) = −|u̇(t)|2, so that v(t) is non-increasing and since f is coercive the trajectory
u(t) stays bounded as t → +∞.

Let us assume that for all t ≥ 0 we have u(t) 6= x̂ (otherwise the result is obvious).
Then, using the convexity inequality 〈x∗, x̂− u(t)〉 ≤ f(x̂)− f(u(t)) together with

|x∗| ≥ 1
|u(t)− x̂|

〈x∗, u(t)− x̂〉,

it follows that

v̇(t) ≤ |x∗|
|u(t)− x̂|

[f(x̂)− f(u(t))] = − |x∗|
|u(t)− x̂|

v(t),

when x∗ ∈ ∂f(u(t)). Taking a suitable constant K such that |u(t)| ≤ K for all
t ≥ 0 and |x̂| ≤ K, using (H2) and the facts that 0 ∈ ∂f(x̂) and v(t) ≥ 0, we
obtain v̇(t) ≤ −βv(t) with β := βK . The conclusions follow at once by integrating
the inequality v̇(t) ≤ −βv(t), and then using the strong convexity inequality f(x̂) +
β
2 |u(t)− x̂|2 ≤ f(u(t)). 2

Remark. Using a special notion of weak solution for (SD;u0) (Brézis [6]), it is
possible to take in the previous proposition u0 ∈ Adh(domf).

This result shows that when f is strongly convex, the steepest descent method has
a very good behavior, converging towards the solution of (P ) at an exponential rate.
However, these assumptions do not hold in many interesting situations, particularly



6 F. ALVAREZ AND J.M. PEREZ

when the original problem (P ) has multiple solutions or when the function f is not
regular or finite. This led Attouch and Cominetti [3] to consider the coupling of the
steepest descent method with approximation schemes in the following way

(DADA;u0)
{

u̇(t) + ∂f(u(t), ε(t)) 3 0
u(0) = u0.

where the function ε : [0,+∞) → IR+ is strictly positive and decreasing to 0 with
t → +∞.

Roughly speaking, if ε(t) converges sufficiently fast to 0, one expects that the
solution trajectories of (DADA) behave like the solutions of (SD) which can be
considered as a limit equation for (DADA) (with ε(t) = 0). As a matter of fact,
under suitable hypothesis, it was proved by Furuya, Miyashiba and Kenmochi [11]
that in this case the trajectory u(t) converges towards an optimal solution of (P ).

On the other hand, it has been proved by Attouch and Cominetti [3] that when
ε(t) converges to 0 sufficiently slow, then u(t) asymptotically approaches the optimal
trajectory x(ε(t)) and therefore it is attracted towards x̂. The speed of convergence
of ε(t) is measured in terms of the strong convexity parameter β(ε) of f(·, ε), namely,
the condition

(H4) 〈∂f(x, ε)− ∂f(y, ε), x− y〉 ≥ β(ε)|x− y|2

implies that (see [3] for details) for all t ≥ t0 ≥ 0

|u(t)− x(ε(t))| ≤ Ce−(E(t)−E(t0)) − e−E(t)

∫ t

t0

eE(s)

∣∣∣∣dx

dε
(ε(s))

∣∣∣∣ ε̇(s)ds(6)

where C := |u0 − x(ε(t0))| and E(t) =
∫ t

0
β(ε(s))ds. It follows that u(t) converges

strongly towards x̂ whenever ∫ +∞

0

β(ε(s))ds = +∞(7)

and either (a) or (b) below hold:

(a)
∫ ε0

0

∣∣∣∣dx

dε

∣∣∣∣ ds < +∞,

(b) lim
t→+∞

∣∣∣∣dx

dε
(ε(t))

∣∣∣∣ ε̇(t)
β(ε(t))

= 0.

Remark. When f(·, ε) = f(·) for all ε > 0 then (DADA) correspond to (SD)
with f strongly convex. In this case, the estimate (6) implies

|u(t)− x̂| ≤ |x0 − x̂|e−βt

which is in fact the estimate obtained by Brézis [6].

It is quite natural to investigate the coupling of approximation schemes with
other descent methods, particularly a second order method such as Newton’s. In the
next section we study a variational characterization of the Newton trajectory which
leads naturally to a dynamical method coupling Newton’s method with approximation
schemes.
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3. A variational characterization of the Newton trajectory. Let us go
back to the original problem (P ) and consider the following family of problems

(Pt) u(t) ∈ Argmin{f(x)− e−t〈x∗0, x〉 : x ∈ H},

where x∗0 ∈ ∂f(u0) is fixed. The optimality condition for (Pt) is

∂f(u(t))− e−tx∗0 3 0

which is the non-smooth version of equation (3), so that (Pt) can be considered as
a non-smooth extension of the Newton method. As a matter of fact, we will prove
in §3.1 that under appropriate assumptions the trajectory u(t) coincides with the
Newton trajectory.

Proposition 3.1. If f is coercive then the optimal set of (Pt) is non-empty and
bounded for all t > 0.

Proof. Consider the function g(x, t) := f(x) − e−t〈x∗0, x〉. For all x∗ ∈ H the
Fenchel conjugate of g(·, t) is given by

g∗(x∗, t) = sup
x∈H

{〈x∗, x〉 − g(x, t)} = f∗(x∗ + e−tx∗0).

Since x∗0 ∈ ∂f(u0) it follows that f∗ is finite at x∗0. On the other hand, our assumption
on f and Moreau’s theorem ensure that f∗ is finite and continuous at 0, and there-
fore the same holds at each point in the segment [0, x∗0). Hence g∗(·, t) is finite and
continuous at 0 for all t > 0 and the conclusion follows by using Moreau’s theorem
once again. 2

Since u0 solves (P0), applying the last proposition one may select an optimal
trajectory u : [0,+∞) → H with u(0) = u0. If the function f is strictly convex, then
this trajectory u(t) is unique. Having established conditions for the existence and
uniqueness of u(t), the question that comes out is its behavior when t → +∞.

Proposition 3.2. Let u : [0,+∞) → H be a trajectory of solutions of (Pt).
Then u(·) is a descent trajectory for f , that is to say

∀t ≥ 0,∀h ≥ 0 f(u(t + h)) ≤ f(u(t)).

In particular, if f is coercive then u(t) stays bounded as t → +∞.
Proof. Since u(t + h) is an optimal solution for (Pt+h), we have

f(u(t + h))− e−(t+h)〈x∗0, u(t + h)〉 ≤ f(u(t))− e−(t+h)〈x∗0, u(t)〉

and therefore

f(u(t + h))− f(u(t)) ≤ e−(t+h)〈x∗0, u(t + h)− u(t)〉.(8)

On the other hand, the optimality of u(t) for (Pt) implies that e−tx∗0 ∈ ∂f(u(t)) so
that

e−t〈x∗0, u(t + h)− u(t)〉 ≤ f(u(t + h))− f(u(t))

which combined with (8) gives

f(u(t + h))− f(u(t)) ≤ e−h[f(u(t + h))− f(u(t))]
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and therefore f(u(t + h))− f(u(t)) ≤ 0. 2

With the previous results we may now state
Proposition 3.3. Assume that f is coercive and let u(t) be an optimal trajectory

for (Pt). Then

lim
t→+∞

f(u(t)) = min f

and every weak limit point of the trajectory {u(t) : t → +∞} belongs to the optimal
set Argmin f .

Moreover, if f satisfies (H2) then there exists a constant C > 0 such that

|u(t)− x̂| ≤ Ce−t

where x̂ is the unique optimal solution of (P ).
Proof. The optimality condition ∂f(u(t))− e−tx∗0 3 0 can be equivalently stated

as

f(u(t)) + f∗(e−tx∗0) = e−t〈x∗0, u(t)〉.(9)

By Moreau’s theorem, f∗ is finite and continuous at 0, while the previous proposition
and the coercivity of f implies that u(t) stays bounded as t → +∞. Passing to the
limit in (9) we get

lim
t→+∞

f(u(t)) = −f∗(0) = inf
x∈H

f(x).

Since u(t) stays bounded as t → +∞ it has weak limit points, and the weak lower
semi-continuity of f together with the convergence of the optimal values, imply that
these limit points minimize f .

When f satisfies (H2), recalling that e−tx∗0 ∈ ∂f(u(t)) and 0 ∈ ∂f(x̂), we obtain

〈e−tx∗0, u(t)− x̂〉 ≥ βK |u(t)− x̂|2

for a suitable constant K > 0, and therefore

|u(t)− x̂| ≤ 1
βK

e−t|x∗0|,

and the conclusion follows with C = |x∗0|/βK . 2

3.1. Equivalence with the continuous Newton’s method. When moti-
vating the study of the family of the problems (Pt)t≥0 in §1, we started from the
continuous Newton method

(CN ;u0)
{
∇2f(u(t))u̇(t) +∇f(u(t)) = 0
u(0) = u0,

and we observed that every solution was an optimal trajectory for (Pt).
The following simple result establishes that the converse holds under suitable dif-

ferentiability assumptions. Therefore, the previous results extend to the non-smooth
setting those obtained for (CN ;u0) by Aubin and Cellina [4] using the viability theory
for differential inclusions.
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Proposition 3.4. Let f ∈ C2(H; IR) be strongly convex function. Then a func-
tion u : [0,+∞) → H is an optimal trajectory for (Pt) if and only if it is the global
solution of the differential equation (CN ;u0).

Proof. We just prove the “only if” part. Let u : [0,+∞) → H be the optimal
trajectory for (Pt), characterized by the optimality condition

∇f(u(t))− e−t∇f(u0) = 0.(10)

Since f ∈ C2(H; IR) and ∇2f(x) is invertible for all x ∈ H (Lax-Milgram theorem)
we can apply the Implicit Function Theorem to (10) in order to conclude that u(·) is
differentiable for all t ≥ 0. Differentiating (10) with respect to t, we obtain

∇2f(u(t))u̇(t) + e−t∇f(u0) = 0,

and using the optimality condition once again we get

∇2f(u(t))u̇(t) +∇f(u(t)) = 0,

so that u(·) is a solution of (CN ;u0). 2

Corollary 3.5. Let f ∈ C2(H; IR) be strongly convex. Then for all u0 ∈ H
there exists a unique u : [0,+∞) → H solution trajectory of (CN ;u0), which is a
descent trajectory for f and satisfies

|u(t)− x̂| ≤ Ce−t

where C is a constant and x̂ is the unique minimizer of f .

4. Approximation and continuous Newton’s method. We have seen in the
previous section that under strong convexity the convergence of Newton’s method is
very fast. Unfortunately, strong convexity is a drastic restriction which does not hold
in many interesting optimization problems, particularly when there exist multiple
optimal solutions. A typical and very important case is linear programming.

As mentioned in §1, the main idea to be developed hereafter is to combine the
continuous Newton method with approximation schemes in which the original problem
(P ) is replaced by a sequence of well-posed strongly convex minimization problems
min{f(x, ε) : x ∈ H}. Our previous analysis was mainly based on the variational
characterization of the Newton trajectory. Hence we are naturally led to consider the
following family of optimization problems

(P ε
t ) u(t) = Argmin{f(x, ε(t))− e−t〈x∗0, x〉 : x ∈ H}

where x∗0 ∈ ∂f(u0, ε0) and the functions ε(t) and f(·, ε) are chosen as in §2.1.
Although much of the subsequent analysis remains valid in a non-smooth setting,

we are specially interested in obtaining a differential equation equivalent to (P ε
t ).

Therefore, we shall assume that the approximating function f(x, ε) is as smooth as
required.

The optimality condition for (P ε
t ) is

∇f(u(t), ε(t))− e−t∇f(u0, ε0) = 0.

If the solution trajectory u(t) exists and is smooth, we can differentiate this stationa-
rity condition in order to obtain

∇2f(u(t), ε(t))u̇(t) + ε̇(t)
∂2f

∂ε∂x
(u(t), ε(t)) + e−t∇f(u0, ε0) = 0,
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from which we derive the differential problem

(ACN) ∇2f(u(t), ε(t))u̇(t) + ε̇(t)
∂2f

∂ε∂x
(u(t), ε(t)) +∇f(u(t), ε(t)) = 0

to which we shall refer as the Approximate Continuous Newton method. This dynami-
cal system combines a Newton correction term leading the trajectory u(t) towards the
exact minimizer x(ε(t)) of f(·, ε(t)), with an extrapolation term anticipating changes
in the target point x(ε(t)).

Remark. An alternative to (P ε
t ) would be to introduce a one-to-one differen-

tiable function η : [0,+∞) → [0,+∞) as follows

u(t) = Argmin{f(x, ε(t))− e−η(t)〈∇f(u0, ε0), x〉 : x ∈ H},

which leads to the differential equation

∇2f(u(t), ε(t))u̇(t) + ε̇(t)
∂2f

∂ε∂x
(u(t), ε(t)) + η̇(t)∇f(u(t), ε(t)) = 0.(11)

Introducing the change of variables t = θ(s) with θ = η−1, and defining v(s) :=
u(θ(s)), (11) is transformed into

∇2f(v(s), ε(θ(s)))v̇(s) +
d

ds
(ε(θ(s)))

∂2f

∂ε∂x
(v(s), ε(θ(s))) +∇f(v(s), ε(θ(s))) = 0,

which is (ACN) with a reparametrized approximating scheme. We will use a re-
parametrization of this kind in §5.

4.1. Existence and asymptotic behavior of the trajectories. We begin by
noting that the unique minimizer x(ε) of f(·, ε) can be characterized as the unique
solution of

∇f(x(ε), ε) = 0.

When ∇2f(x(ε), ε) is positive definite, the implicit function theorem ensures that the
curve ε → x(ε) is differentiable and satisfies

∇2f(x(ε), ε)
dx

dε
(ε) +

∂2f

∂ε∂x
(x(ε), ε) = 0.

Therefore, if the initial condition is u0 = x(ε0) then u(t) = x(ε(t)) is the unique
solution of (ACN).

We shall prove in the sequel that when the initial condition u0 does not lie on
the optimal trajectory, the solution trajectory u(t) will nevertheless approach x(ε(t)),
from which we may deduce its convergence towards x̂. As a by-product we obtain a
useful estimate for the rate of convergence.

4.1.1. The strongly convex case. For simplicity, we shall assume in the follo-
wing that the effective domain of the approximating function is a constant open set,
that is to say, there exists an open set Ω ⊂ H such that

Ω = domf(·, ε) = {x ∈ H : f(x, ε) < +∞}

for all ε > 0.
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Theorem 4.1. Let us consider an approximate family {f(·, ε)}ε>0 such that
f(·, ·) ∈ C2(Ω × (0, ε0]; IR), where Ω = domf(·, ε) for all ε > 0. If f(·, ε) is strongly
convex with parameter β(ε) then

(i) For every initial condition u0 ∈ Ω, there exists a unique u : [0,+∞) → Ω
solution trajectory for (ACN) which satisfies

|u(t)− x(ε(t))| ≤ |∇f(u0, ε0)|
e−t

β(ε(t))
(12)

where x(ε) is the optimal solution of (P ε).
(ii) If (H3) is satisfied and

lim
t→+∞

etβ(ε(t)) = +∞(13)

then

lim
t→+∞

u(t) = lim
t→+∞

x(ε(t)) = x̂.

Proof. The proof uses the same techniques of the non-parametric case. To prove
(i), we study the existence and uniqueness of an optimal trajectory for the variational
characterization

(P ε
t ) u(t) = Argmin{f(x, ε(t))− e−t〈∇f(u0, ε0), x〉 : x ∈ H}.

Since f(·, ε) is strongly convex, then the function

g(x, t) := f(x, ε(t))− e−t〈∇f(u0, ε0), x〉

is also strongly convex with the same parameter β(ε). So, there exists a unique u(t)
optimal solution (P ε

t ) which belongs to Ω. Moreover, applying the Implicit Function
Theorem to the optimality condition of (P ε

t ), we conclude that u : [0,+∞) → Ω
is differentiable and is a solution trajectory for (ACN). Noting that a solution of
(ACN) is a optimal trajectory for (P ε

t ), the uniquess for (ACN) follows.
For the estimate, it is enough to notice that from the strong monotonicity property

it follows that

〈∇f(u(t), ε(t)), u(t)− x(ε(t))〉 ≥ β(ε(t))|u(t)− x(ε(t))|2,

so that

|u(t)− x(ε(t))| ≤ e−t

β(ε(t))
|∇f(u0, ε0)|.

Since (ii) is a direct consequence of (i) the proof is complete.2

Note that we have made no assumptions on the optimal path x(ε) except its con-
vergence towards x̂. The latter is a distinguishing feature of the approximate New-
ton’s method (ACN) with respect to known results for the steepest descent method
(DADA) (see conditions (a) and (b) in §2.2). Moreover, equation (13) provides a rel-
atively weak condition on the parameter function ε(t) which ensures that the solution
trajectories of (ACN) asymptotically approaches the optimal trajectory x(ε(t)). We
shall see in the following examples that condition (13) is much weaker than the basic
hypothesis (7) needed for convergence in the steepest descent method.
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Before proceeding with these examples it is illustrative to compare (12) with the
corresponding estimate (6) for (DADA). Assume that the strong convexity property
holds with parameter β(ε) = ε and also that the optimal path satisfies∣∣∣∣dx

dε
(ε)

∣∣∣∣ ≤ C0

for some constant C0, which implies the finite length of the optimal path (see condition
(a)). If we have ∫ +∞

0

ε(s)ds = +∞

then the solution uD(t) of (DADA) norm converges to x̂.
Take for instance ε(t) = (1−α)(1+ t)−α with 0 < α < 1. After a careful analysis

of (6), it is possible to prove that asymptotically,

|uD(t)− x(ε(t))| ≤ C

tα
(14)

for a suitable constant C and t large enough (see [3]). Denote by uN (t) the corres-
ponding solution for (ACN), then (12) directly becomes

|uN (t)− x(ε(t))| ≤ |∇f(u0, ε0)|
(1− α)

(1 + t)α

et

which is sharper than (14).
If we take ε(t) = 1/(1 + t) then asymptotically (see [3]),

|uD(t)− x(ε(t))| ≤ C
ln(t)

t

for certain C > 0 and t large, while for the solution of (ACN) we have

|uN (t)− x(ε(t))| ≤ |∇f(u0, ε0)|
1 + t

et

which converges to 0 much faster than ln(t)/t.
The sharper estimates obtained with (ACN) must be balanced with the simpler

form of (DADA) and with the extra effort involved in the computation of the inverse
of the Hessian in (ACN).

Example 1. Log-barrier in linear programming.
With the linear program

(LP ) min{c′x : Ax ≤ b }

it is associated the function

f(x) =
{

c′x if Ax ≤ b
+∞ otherwise

The log-barrier approximation of f is given by

f(x, ε) = c′x− ε
m∑

i=1

ln(bi − a′ix).(15)



CONTINUOUS NEWTON’S METHOD FOR CONVEX MINIMIZATION. 13

where the vectors ai denote the rows of the full rank matrix A.
If we assume that the interior of the feasible set F = {x ∈ IRn : Ax ≤ b} is

non-empty and bounded, then the corresponding problem (P ε) has a unique solution
x(ε) which converges towards the analytic center x̂ of the optimal set S(LP ) defined
as the unique solution of

max{
∑
i/∈I0

ln(bi − a′ix) : x ∈ S(LP )}

where I0 = {i : a′ix = bi for all x ∈ S(LP )}.
For the log-barrier approximation we have Ω =domf(·, ε) = {x ∈ IRn : Ax < b}

which is an open subset of IRn, f(·, ·) ∈ C∞(Ω×(0,+∞); IR) and the strong convexity
hypothesis holds with β(ε) = µε for a suitable constant µ > 0. For x ∈ Ω we have

∇f(x, ε) = c + ε
m∑

i=1

1
(bi − a′ix)

ai = c + εA′d(x),

∇2f(x, ε) = ε
m∑

i=1

1
(bi − a′ix)2

aia
′
i = εA′D(x)2A

and

∂2f

∂ε∂x
(x, ε) = A′d(x)

where the vector valued function d : Ω → IRm is defined by

d(x) :=
(

1
(bi − a′ix)

: i = 1, ...,m
)

,

and D(x) is the diagonal matrix D(x) := diag(d(x)).
Let ε(·) ∈ C1([0,+∞); IR+) be decreasing to 0. In this case, condition (13) of

Theorem 4.1 becomes

lim
t→+∞

etε(t) = +∞.(16)

For example, take ε(t) = e−αt with 0 < α < 1 or ε(t) = (1 + t)−r with r > 0. Then
we obtain as a corollary the following result.

Proposition 4.2. According to the previous definitions and assuming (16), for
every interior point u0 ∈ {x ∈ IRn : Ax < b} the unique solution of

(ACN)
{

[ε(t)A′D(u(t))2A]u̇(t) + (ε̇(t) + ε(t))A′d(u(t)) + c = 0
u(0) = u0

converges as t → +∞ towards x̂ the analytic center of the optimal set S(LP ).
Remark. If ε(t) = e−αt with 0 < α < 1 or ε(t) = (1 + t)−r with r > 1, then∫ +∞

0
β(ε(s))ds < +∞, and we can not ensure the convergence to x̂ of the solution for

the corresponding approximate steepest descent method (DADA).2
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4.1.2. The non-global strongly convex case. Let us return to the variational
characterization

(P ε
t ) u(t) = Argmin{f(x, ε(t))− e−t〈x∗0, x〉 : x ∈ H}.

where x∗0 ∈ ∂f(u0, ε0) and ε(t) decreases to 0 as t → +∞. When the approximate
function fails to satisfy the strong convexity property (for example, when it is just
strongly convex over bounded sets), we can not apply directly Theorem 4.1. However,
in certain cases we can generalize our analysis if we take into account the following
steps: first prove that the problem (P ε

t ) admits a unique solution u(t) for all t > 0,
and then prove that the trajectory u(t) is bounded, hence the estimate

|u(t)− x(ε(t))| ≤ |∇f(u0, ε0)|
e−t

βK(ε(t))

holds for a suitable constant K > 0.
In order to accomplish the first step, the following proposition may be a useful

tool. We shall assume that the effective domain of the Fenchel conjugate of the
approximate function is independent of ε. More precisely, there exists a set F ⊂ H
such that

F = domf∗(·, ε) = {x∗ ∈ H : f∗(x∗, ε) < +∞}

for all ε > 0, where

f∗(x∗, ε) := sup
x∗∈H

{〈x∗, x〉 − f(x, ε)}.

Proposition 4.3. Assume that for every ε > 0 the approximate function f(·, ε)
is coercive and satisfies (H2). If there exists F ⊂ H such that F = domf∗(·, ε) for all
ε > 0, then problem (P ε

t ) admits a unique solution u(t) for all t > 0.
Proof. As in the proof of Proposition 3.1, let us consider the function g(x, t) :=

f(x, ε(t))− e−t〈x∗0, x〉. Since f(·, ε) is strictly convex, the same holds for g(·, t) so its
minimum must be unique.

To establish the existence of u(t), we note that f(·, ε0) is strongly convex over
bounded sets, so that the same holds for g(·, 0). Since the minimum of the latter is
attained (at u0) we deduce that there exist constants K > 0 and β0 > 0 such that

g(u0, 0) +
β0

2
|x− u0|2 ≤ g(x, 0)

for all x ∈ B(u0,K). For simplicity assume that u0 = 0 and g(u0, ) = 0, so we have

β0

2
|x|2 ≤ g(x, 0)(17)

when x ∈ B(0,K). Suppose that for certain α ∈ IR the corresponding level set is
unbounded. Take a sequence xk ∈ H such that |xk| → +∞ with g(xk, 0) ≤ α. Using
(17) with x := Kxk/|xk| and from the convexity of g(·, 0) it follows that for k large
enough such that K/|xk| < 1 then

β0

2
K2 ≤ g(K

xk

|xk|
, 0) ≤ K

|xk|
g(xk, 0) ≤ kα

|xk|
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which contradicts the fact that K > 0 and β0 > 0. We conclude that g(·, 0) is a
coercive function, thus g∗(·, 0) is finite and continuous at 0.

On the other hand, we have

g∗(x∗, t) = f∗(x∗ + e−tx∗0, ε(t))

for all x∗ ∈ H, and therefore f∗(·, ε0) is finite and continuous at x∗0. In particular x∗0
belongs to the interior of the effective domain of f∗(·, ε0), and since F = domf∗(·, ε)
for all ε > 0, it follows that x∗0 belongs to the interior of domf∗(·, ε(t)) for all t ≥ 0.
Since f(·, ε(t)) is coercive, we also have that 0 belongs to the interior of domf∗(·, ε(t))
for all t > 0, and therefore the same conclusion holds for e−tx∗0. It follows that
f∗(·, ε(t)) is finite and continuous at e−tx∗0, from which we get that g∗(·, t) is finite
and continuous at 0, that is to say g(·, t) is coercive and its minimum must be attained.
2

Remark. In the finite dimensional case it is possible to replace (H2) by just
assuming f(·, ε) strictly convex, and the previous proposition still holds.

Notice that when f(·, ε) is strongly convex over the whole space, it is clear that

f∗(x∗, ε) = min
x∈H

{f(x, ε)− 〈x∗, x〉} < +∞

so that domf∗(·, ε) = H and we may apply Proposition 4.3. Nevertheless, in this case
the proof for the existence of u(t) is direct. A more interesting situation where the
latter result applies is the following.

Example 2. Exponential penalty in linear programming.
Let us consider the linear program (LP ) of Example 1 and the approximation given
by

f(x, ε) = c′x + ε
m∑

i=1

exp((a′ix− bi)/ε).(18)

If we assume that the optimal set S(LP ) is non-empty and bounded, then there exists
a unique optimal path x(ε) of solutions of (P ε) which converges to a particular point
x̂ ∈ S(LP ) called the centroid (see Cominetti and San Martin [9]).

For every x ∈ IRn we have

∇f(x, ε) = c +
m∑

i=1

exp((a′ix− bi)/ε)ai = c + A′λ(x, ε),

∇2f(x, ε) =
1
ε

m∑
i=1

exp((a′ix− bi)/ε)aia
′
i =

1
ε
A′D(x, ε)A

and

∂2f

∂ε∂x
(x, ε) = − 1

ε2

m∑
i=1

exp((a′ix− bi)/ε)(a′ix− bi)ai = −1
ε
A′S(λ(x, ε))

where the vector valued function λ : IRn × (0,+∞) → IRm is defined by

λ(x, ε) := exp((Ax− b)/ε) = (exp((a′ix− bi)/ε) : i = 1, ...,m),(19)
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the diagonal matrix D(x, ε) := diag(λ(x, ε)) and S : IRm
+ → IRm by

S(λ) := (λi lnλi : i = 1, ...,m),

with the convention 0 ln 0 = 0.
For this approximation, we have Ω = domf(·, ε) = IRn and f(·, ε) is strongly

convex over bounded sets with parameter

βK(ε) =
µK

ε
e−MK/ε

for suitable strictly positive constants µK and MK . Note that if the feasible set is
unbounded, the exponential penalty function fails to be strongly convex with global
parameter (an analogous situation occurs for the log-barrier function) and we can not
apply Theorem 4.1.

Proposition 4.4. Let ε : IR → IR+ be decreasing to 0 and consider the expo-
nential penalty function f(·, ε) defined above. Then problem (P ε

t ) admits a unique
solution trajectory u(t) which stays bounded as t → +∞.

Proof. In this case, f(·, ε) is strongly convex over bounded sets and it is not
difficult to prove that

domf∗(·, ε) = {λ ∈ IRm : A′λ = −c, λ ≥ 0}

which does not depend on ε. Hence, the existence and uniqueness of the optimal
trajectory u(t) follows from Proposition 4.3.

Let us consider once again the function

g(x, t) := f(x, ε(t))− e−t∇f(u0, ε0)′x.

Suppose that for a sequence tk → +∞ we have |u(tk)| → +∞. Passing to a subse-
quence we can assume that u(tk)

|u(tk)| → z ∈ IRn for some z such that |z| = 1. Let x ∈ IRn

be fixed and such that Ax ≤ b. From the optimality of u(tk) and the definition of the
exponential penalty we have

g(u(tk), tk) ≤ g(x, tk) ≤ c′x− e−tk∇f(u0, ε0)′x + ε(tk)m.(20)

Hence

c′u(tk)− e−tk∇f(u0, ε0)′u(tk) ≤ c′x− e−tk∇f(u0, ε0)′x + ε(tk)m,

and dividing by |u(tk)| and passing to the limit we get

c′z ≤ 0.

On the other hand, from (20) we also have

a′ixk − bi ≤ ε(tk) ln[(L + c′(x− u(tk))− e−tk∇f(u0, ε0)′(x− u(tk)) + ε(tk)m)/ε(tk)]

for a suitable constant L. From this it follows that a′iz ≤ 0 and we have found a
vector z 6= 0 such that c′z ≤ 0 and Az ≤ 0, which contradicts the boundedness of the
optimal set S(LP ). 2

With this result we have the existence of a bounded solution trajectory u(t) for
the associated dynamical system (ACN), and we obtain the estimate

|u(t)− x(ε(t))| ≤ |∇f(u0, ε0)|
e−t

βK(ε(t))
= Ce−t+M/ε(t)ε(t)(21)
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for suitable constants C > 0 and M > 0. If we have

lim
t→+∞

et−M/ε(t)

ε(t)
= +∞

for all M > 0, then u(t) converges towards the centroid of S(LP ).
Estimates like (21) may also be useful in order to obtain dual convergence results.

To be more precise we observe that by means of the Fenchel duality theory and in
the case of the exponential penalty approximation, it is possible to associate to the
corresponding problem (P ε) the following dual problem

(Dε) min{b′λ + ε
m∑

i=1

λi(lnλi − 1) : A′λ = −c, λ ≥ 0}

which can be interpreted as a penalized version of the classical dual problem of (LP ),
namely

(D). min{b′λ : A′λ = −c, λ ≥ 0}

The previous dual was studied in [9] where it is shown that if x(ε) denotes the optimal
solution of the exponential penalized problem (P ε), then λ(x(ε), ε) (with λ(x, ε) de-
fined as in (19)) is the unique optimal solution of (Dε). Moreover, λ(x(ε), ε) converges
towards a particular solution λ̂ of the dual problem (D), characterized as the unique
solution of

(D0) min{
∑
i∈I0

λi(lnλi − 1) : A′λ = −c, λi = 0 i /∈ I0, λi ≥ 0 i ∈ I0}.

where I0 = {i : a′ix = bi for all x ∈ S(LP )}.
Denote for simplicity λ(x, t) := λ(x, ε(t)). Since

λi(u(t), t) = exp(a′i(u(t)− x(ε(t)))/ε(t)) exp((a′ix(ε(t))− bi)/ε(t))

= exp(a′i(u(t)− x(ε(t)))/ε(t))λi(x(ε(t)), t),

for all i = 1, ...,m, if we have

lim
t→+∞

|u(t)− x(ε(t))|
ε(t)

= 0(22)

then

lim
t→+∞

λ(u(t), t) = lim
t→+∞

λ(x(ε(t)), t) = λ̂.

In order to have (22), using the estimate (21) we obtain

|u(t)− x(ε(t))|
ε(t)

≤ |∇f(u0, ε0)|
e−t

βK(ε(t))ε(t)
= Ce−t+M/ε(t).

Therefore, we must have

lim
t→+∞

et−M/ε(t) = +∞
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or equivalently,

lim
t→+∞

t− M

ε(t)
= +∞(23)

for all M > 0. For example, ε(t) = (1 + t)−α with 0 < α < 1.
Finally, since (22) implies

lim
t→+∞

|u(t)− x(ε(t))| = 0,

we have the following result.
Proposition 4.5. According to the previous definitions, if the parameter ε(t)

satisfies (23) then for every u0 ∈ IRn the unique solution of

(ACN)

{
[ 1
ε(t)A

′D(u(t), ε(t))A]u̇(t)− ε̇(t)
ε(t)A

′S(λ(u(t), t)) + A′λ(u(t), t) + c = 0
u(0) = u0

converges as t → +∞ towards x̂ the centroid of the optimal set S(LP ). Moreover

λ(u(t), t) = exp((Au(t)− b)/ε(t))

converges to λ̂ a particular solution of the dual problem (D).
Remark. In this case, the dual convergence for (ACN) comes from the sharp

estimate (21) for the distance between u(t) and the optimal trajectory x(ε(t)). A
similar analysis for (DADA) trajectories may be involved since the corresponding
estimate (6) is more complicated.

5. Epi-convergence and scaling. When the strong monotonicity parameter
β(ε) goes to 0, the increasing ill-conditioning of the Hessian operator of the approx-
imating function represents an important problem from the numerical point of view.
In this section, we shall see how in certain cases, an appropriate rescaling of the dif-
ferential equation may be used to transform the original system into a renormalized
system where β(ε) is identically equal to 1.

In many situations (see [1, 17]) the epi-convergence and scaling method provides
a variational characterization of the point x̂ ∈ Argmin f obtained as a limit of the
optimal trajectory x(ε) := Argmin f(·, ε). In order to describe this method assume
that

f = epi− lim
ε→0

f(·, ε),

that is, f is the Mosco-epi-limit of the parametric family of strongly convex functions
f(·, ε).

Let us define

h(x, ε) :=
1

β(ε)
[f(x, ε)−min f ]

and consider the rescaled minimization problem

(Rε) min{h(x, ε) : x ∈ H}

Note that (Rε) has also the point x(ε) as unique solution. Hence, with this rescal-
ing no changes are introduced in the optimal trajectory, and the parametric family
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{h(·, ε)}ε>0 has the same regularizing properties as {f(·, ε)}ε>0 (coercivity, smooth-
ness, etc.). However, for the new family of functions, the strong monotonicity property
holds with parameter identically equal 1,

〈∂h(x, ε)− ∂h(y, ε), x− y〉 ≥ |x− y|2.

Suppose now that in addition to the epi-convergence of f(·, ε) we assume that h(·, ε)
epi-converges towards a proper function h,

h = epi− lim
ε→0

h(·, ε).

Then, as a consequence (see Attouch [1]) we have

〈∂h(x)− ∂h(y), x− y〉 ≥ |x− y|2,

so that h is a strongly convex function. Let x̂ be its unique minimizer. Since h(x) =
+∞ for x 6∈ Argmin f , then x̂ ∈ Argmin f , and since from the Mosco-epi-convergence
we have that every limit point of the optimal path {x(ε) : ε → 0} minimizes h, we
conclude

lim
ε→0

x(ε) = x̂.

Let us assume smoothness for the parametric family f(·, ε) in order to study the
dynamical system

∇2f(u(t), ε(t))u̇(t) + ε̇(t)
∂2f

∂ε∂x
(u(t), ε(t)) +∇f(u(t), ε(t)) = 0.

If we re-scale this equation multiplying by 1/β(ε(t)) we get

∇2h(u(t), ε(t))u̇(t) +
ε̇(t)

β(ε(t))
∂2f

∂ε∂x
(u(t), ε(t)) +∇h(u(t), ε(t)) = 0.

Assuming in addition that β(ε) is differentiable, we have

∂2f

∂ε∂x
(x, ε) = β′(ε)∇h(x, ε) + β(ε)

∂2h

∂ε∂x
(x, ε),

and therefore we get

∇2h(u(t), ε(t))u̇(t) + ε̇(t)
∂2h

∂ε∂x
(u(t), ε(t)) + [1 +

β′(ε(t)) · ε(t)
β(ε(t))

]∇h(u(t), ε(t)) = 0.

Let us define

η(t) := t + ln(β(ε(t)))

and introduce the change of variables s = η(t). Denoting for simplicity v(s) :=
u(η−1(s)) and h(x, s) := h(x, ε(η−1(s))) we get the equivalent differential equation

∇2h(v(s), s)v̇(s) +
∂2h

∂s∂x
(v(s), s) +∇h(v(s), s) = 0

where now the functions h(·, s) are strongly convex with a uniform parameter β = 1.
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For the asymptotic analysis it is natural to require that the reparametrization
satisfies limt→+∞ η(t) = +∞. In the particular case above, this amounts to

lim
t→+∞

etβ(ε(t)) = +∞,

which is precisely the hypothesis made in Theorem 4.1. Under this condition, the
estimate

|v(s)− x(ε(s))| ≤ e−s|∇h(v0, ε0)|

is equivalent to the one given in Theorem 4.1.

Example 3. Viscosity method.
Let f be a closed convex function with optimal set Argmin f nonempty. Let the
approximation be

f(x, ε) = f(x) +
ε

2
|x|2 ,

which regularizes problem (P ) by adding a strongly convex term. In this case, we
may take β(ε) = ε. We have that

f = epi− lim
ε→0

f(·, ε),

and if we define

h(x, ε) :=
1
ε
[f(x, ε)−min f ] =

f(x)−min f

ε
+
|x|2

2
,

then it is easy to prove that

h = epi− lim
ε→0

h(·, ε)

where

h :=
{

1
2 |x|

2
if x ∈ Argmin f

+∞ otherwise

Therefore, the unique solution x (ε) of (P ε) converges towards the element of minimal
norm in Argmin f (see Tikhonov and Arsenine [16]).

Assume that f ∈ C2(H; IR) and take the parameter function ε(t) = e−αt with
0 < α < 1. Then

η(t) = t + ln(ε(t)) = (1− α)t

and the change of variables s = (1 − α)t leads to the function ε(s) = e−
α

1−α s. If we
choose for instance α = 1

2 then

h(x, s) := es(f(x)−min f) +
|x|2

2

and we obtain
Proposition 5.1. For every v0 ∈ H, the unique solution of{

[es∇2f(v(s)) + I]v̇(s) + 2es∇f(v(s)) + v(s) = 0
v(0) = v0

converges as s → +∞ towards x̂ the element of minimal norm in Argmin f . 2
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