Polynuclear growth and the KPZ fixed point

Daniel Remenik Universidad de Chile XVI CLAPEM, July 2023

Joint work with Konstantin Matetski and Jeremy Quastel

The polynuclear growth process (PNG)

Height function $h: \mathbb{R} \longrightarrow \mathbb{Z} \cup \{-\infty\}$ [Gates-Westcott '95, Prähofer-Spohn '02] Down jumps \square move to the right, up jumps \square move to the left, at speed 1

Up/down jump ____ nucleations at space-time Poisson pt. proc., rate 2

Expanding islands annihilate on contact

Independent Poisson up and down jumps, rate 1, are invariant

Blue dots are creation events | Red crosses are annihilations

Initial condition is $\vartheta_0(0) = 0$, $\vartheta_0(x) = -\infty$ if $x \neq 0$ narrow wedge

Blue dots are creation events | Red crosses are annihilations Initial condition is $\vartheta_0(0) = 0$, $\vartheta_0(x) = -\infty$ if $x \neq 0$ narrow wedge

$$h(t, x; h_0) = \sup_{y \in \mathbb{R}} \left\{ h(t, x; \mathfrak{d}_y) + h_0(y) \right\}$$
 (Poissonian LPP)

 $N\sim {\sf Poisson}[t^2]$ points inside the square, η - ζ order defines $\sigma\in S_N$ $\sigma=(2,3,5,4,6,1)$

h(t,0) is the length ℓ_N of longest increasing subsequence in σ

[Baik-Deift-Johansson '99] $N^{-1/6}(\ell_N - 2\sqrt{N}) \longrightarrow \text{Tracy-Widom GUE}$

So $t^{-1/3}(h(t, 0) - 2t) \longrightarrow$ Tracy-Widom GUE

[Baik-Deift-Johansson '99] $N^{-1/6}(\ell_N - 2\sqrt{N}) \longrightarrow \text{Tracy-Widom GUE}$

So $t^{-1/3}(h(t, 0) - 2t) \longrightarrow$ Tracy-Widom GUE

 $t^{-1/3}(h(t, 0) - 2t) \longrightarrow$ Tracy-Widom GUE

Narrow wedge/droplet: $t^{-1/3}(h(t, t^{2/3}x) - 2t) \longrightarrow \mathcal{A}_2(x) - x^2$ [Prähofer-Spohn '02, Johansson '03]Airy2 process, TW-GUE marginals

Flat $(h_0 \equiv 0)$: $t^{-1/3}(h(t, t^{2/3}x) - 2t) \longrightarrow \mathcal{A}_1(x)$

[Borodin-Ferrari-Sasamoto '08] Airy₁ process, TW-GOE marginals (symmetrized random permutations [Baik-Rains '01])

Similar results for exclusion processes, LPP ('00s) Many extensions for related processes during the last decade

KPZ universality

PNG belongs to the KPZ universality class

(random interface growth, directed polymers, interacting particle systems...)

 \longrightarrow one expects that (assuming $\varepsilon^{1/2}h_0(c_2\varepsilon^{-1}x) \longrightarrow \mathfrak{h}_0(x)$ as $\varepsilon \to 0$)

$$\varepsilon^{1/2}h(c_1\varepsilon^{-3/2}t,c_2\varepsilon^{-1}x)-c_3\varepsilon^{-1}t\xrightarrow[\varepsilon\to 0]{}\mathfrak{h}(t,x;\mathfrak{h}_0)$$

where $(\mathfrak{h}(t, x))_{t\geq 0, x\in\mathbb{R}}$ is the KPZ fixed point (starting from \mathfrak{h}_0) The KPZ fixed point is a <u>1:2:3 scaling invariant</u> Markov process which is the (conjectural/defining) universal scaling limit of all models in the KPZ class

KPZ universality

PNG belongs to the KPZ universality class

(random interface growth, directed polymers, interacting particle systems...)

 \longrightarrow one expects that (assuming $\varepsilon^{1/2}h_0(c_2\varepsilon^{-1}x) \longrightarrow \mathfrak{h}_0(x)$ as $\varepsilon \to 0$)

$$\varepsilon^{1/2}h(c_1\varepsilon^{-3/2}t,c_2\varepsilon^{-1}x)-c_3\varepsilon^{-1}t\xrightarrow[\varepsilon\to 0]{} \mathfrak{h}(t,x;\mathfrak{h}_0)$$

where $(\mathfrak{h}(t, x))_{t\geq 0, x\in\mathbb{R}}$ is the <u>KPZ fixed point</u> (starting from \mathfrak{h}_0) The KPZ fixed point is a <u>1:2:3 scaling invariant</u> Markov process which is the (conjectural/defining) universal scaling limit of all models in the KPZ class Constructed as a scaling limit of TASEP in [Matetski-Quastel-R '17], known now for several other special models

KPZ universality

PNG belongs to the KPZ universality class

(random interface growth, directed polymers, interacting particle systems...)

 \longrightarrow one expects that (assuming $\varepsilon^{1/2}h_0(c_2\varepsilon^{-1}x) \longrightarrow \mathfrak{h}_0(x)$ as $\varepsilon \to 0$)

$$\varepsilon^{1/2}h(c_1\varepsilon^{-3/2}t,c_2\varepsilon^{-1}x)-c_3\varepsilon^{-1}t\xrightarrow[\varepsilon\to 0]{} \mathfrak{h}(t,x;\mathfrak{h}_0)$$

where $(\mathfrak{h}(t,x))_{t\geq 0,x\in\mathbb{R}}$ is the <u>KPZ fixed point</u> (starting from \mathfrak{h}_0) The KPZ fixed point is a 1:2:3 scaling invariant Markov process which is

the (conjectural/defining) universal scaling limit of all models in the KPZ class

Thm:

The above limit holds for the PNG model

Follows from [Dauvergne-Virág '21] or [Matetski-Quastel-R '22]

 $[\text{Dauvergne-Virág '21}]: \sup_{y \in \mathbb{Z}} (h(t, x; \mathfrak{d}_y) + h_0(y)) \longrightarrow \sup_{y \in \mathbb{Z}} (\mathfrak{A}_t(x, y) + \mathfrak{h}_0(y))$ (directed landscape)

Fredholm determinant formula for PNG

[Matetski-Quastel-R '22]: explicit Fredholm determinant formula for the PNG transition probs. $\mathbb{P}_{h_0}(h(t, x_i) \le r_i, i = 1, ..., n)$

One-point distributions: $\mathbb{P}_{h_0}(h(t,x) \leq r) = \det \left(I - K_{t,x}^{h_0}\right)_{\ell^2(\mathbb{Z}_{>r})}$

with
$$K_{t,x}^{h_0} = e^{-2t\nabla - t\Delta} P_{x-t,x+t}^{\text{hit}(h_0)} e^{2t\nabla - t\Delta}$$

(multipoint formulas are similar)

$$\nabla f(x) = \frac{1}{2}(f(x+1) - f(x-1)), \quad \Delta f(x) = f(x+1) - 2f(x) + f(x-1),$$

 $X_{
m s}$ a symmetric, continuous time, rate 1, nearest neighbor RW on $\mathbb Z$

$$P_{a,b}^{\mathsf{hit}(h_0)}(u,v) = \mathbb{P}_{X_a=u}(X \text{ hits hypo}(h_0) \text{ on } [a,b], X_b = v)$$

Sketch of the proof: Kolmogorov equation

The formula was first obtained as the scaling limit of a similar formula for discrete time TASEP with parallel update [Matetski-R '21]

Alternative pf.: check directly that $F_r(t, x)$ satisfies the Kolmogorov backw. eqn.

Let ${\mathcal L}$ be the generator of PNG, ${\mathcal L}={\mathcal L}_{\rm det}+{\mathcal L}_{\rm cr}$

Need to check that $(\partial_t F_r(t, x; h) = \mathscr{L}F_r(t, x; h))$ (\mathscr{L} acting on initial h)

 $F_r(t,x;h) = \det(I-K)$, so $\partial_t F_r(t,x;h) = -\det(I-K)\operatorname{tr}((I-K)^{-1}\partial_t K)$

 \mathscr{L}_{det} is a differ. oper., $\mathscr{L}_{cr} \det(I - K)$ is built out of rank one perturbations,

so
$$\mathscr{L}F_r(t,x;h) = -\det(I-K)\operatorname{tr}((I-K)^{-1}\mathscr{L}K)$$

Thus we only need to prove $\left(\partial_t K = \mathscr{L} K\right)$ (!)

 $\partial_{t}K \text{ is explicit: } \left[\partial_{t}K = \partial_{t} \left(e^{-2t\nabla - t\Delta} P_{x-t,x+t}^{\mathsf{hit}(h_{0})} e^{2t\nabla - t\Delta} \right) = -2[\nabla, K] \right]$ $[\nabla, K] = \nabla K - K\nabla$

So we need $\mathscr{L}K = -2[\nabla, K]$.

Key fact 1: $g(s) := X_s$ is invariant under the PNG dynamics

(modulo global height)

Key fact 2: the PNG dynamics preserves order,

 $f_1 \leq f_2 \iff h(t,\cdot;f_1) \leq h(t,\cdot;f_2)$

Then

$$\begin{aligned} \mathscr{L}_{h} P_{a,b}^{\mathsf{hit}(h)}(u,v) &= \mathscr{L}_{h} \mathbb{E}_{a,u;b,v}(\Phi^{\mathsf{hit}\,0}(g-h)) \qquad (g(s) = X_{s}) \\ &= \lim_{t \to 0} \frac{1}{t} \Big(\mathbb{E}_{a,u;b,v}(\Phi^{\mathsf{hit}\,0}(g-h(t))) - \mathbb{E}_{a,u;b,v}(\Phi^{\mathsf{hit}\,0}(g-h)) \Big) \\ &= \lim_{t \to 0} \frac{1}{t} \Big(\mathbb{E}_{a,u;b,v}(\Phi^{\mathsf{hit}\,0}(g(-t)-h)) - \mathbb{E}_{a,u;b,v}(\Phi^{\mathsf{hit}\,0}(g-h)) \Big) \\ &= \mathbb{E}_{a,u;b,v} \Big(\mathscr{L}_{g}^{*} \Phi^{\mathsf{hit}\,0}(g-h) \Big) \\ &= \cdots \\ &= -2[\nabla, P_{a,b}^{\mathsf{hit}(h)}] \end{aligned}$$

KPZ fixed point formula

$$\begin{aligned} \zeta_{t,x}^{h_0} &= e^{-2t\nabla - t\Delta} P_{x-t,x+t}^{\text{hit}(h_0)} e^{2t\nabla - t\Delta}. & \text{After } \varepsilon \text{ rescaling: } X_s \longrightarrow B_s, \\ & e^{x\Delta} \longrightarrow e^{x\partial^2} \text{ (heat kernel)} \\ & e^{2t\nabla} \approx e^{\frac{t}{3}\partial^3 + \text{shift}} \end{aligned}$$

 $\mathbf{K}_{\text{Brownian}}^{\text{nypo}(\mathfrak{h}_{0})} \sim \mathbf{K}_{\text{Brownian}}^{\text{nypo}(\mathfrak{h}_{0})} \sim \mathbf{K}_{\text{Brownian}}^{\text{nypo}(\mathfrak{h}_{0})}$

Asymptotic probab. for a
 BM to hit hypograph(h₀)

Brownian scattering operator

For the KPZ fixed point, $\mathbb{P}_{\mathfrak{h}_{0}}(\mathfrak{h}(t,x) \leq r) = \det \left(\mathbf{I} - e^{-\frac{t}{3}\partial^{3} - x\partial^{2}} \mathbf{K}_{\text{Brownian}}^{\text{hypo}(\mathfrak{h}_{0})} e^{\frac{t}{3}\partial^{3} + x\partial^{2}} \right)_{L^{2}((r,\infty))}$

(Similar formula for multipoint distributions)

Classical integrability of PNG/KPZ fixed point

[Baik-Deift-Johansson '99]: for PNG with narrow wedge initial data,

$$F_r(s) \coloneqq \mathbb{P}_{\mathfrak{d}_0}(h(s,0) \le r) = \det \left(I_{i-j}(2s) \right)_{i,j=0,\dots,r-1}$$

 $(I_k \text{ modified Bessel functions of the first kind})$

From this, $\alpha_r^2 = 1 - \frac{F_{r+1}F_{r-1}}{F_r^2}$ satisfies [Periwal-Shevitz '90, Borodin '01 ...] $-s(1 - \alpha_r^2)(\alpha_{r+1} + \alpha_{r-1}) = r\alpha_r$ discrete Painlevé II equation

as well as $\partial_s \alpha_r = \frac{1}{2}(1 - \alpha_r^2)(\alpha_{r+1} - \alpha_{r-1})$ Ablowitz-Ladik lattice

For the limiting fluctuations one has $F_{TW-GUE}(x) = e^{-\int_{r}^{\infty} (x-z)q(z)^{2}dz}$ with *q* the Hastings-McLeod solution of [Tracy-Widom '94] $q''(x) = 2q(x)^{3} + xq(x)$ Painlevé II equation

Similar results for <u>flat</u> initial data

$$\partial_t K^{PNG} = -2 \left[\nabla, K^{PNG} \right],$$

$$\partial_x K^{PNG} = -2 \nabla K^{PNG} - 2 K^{PNG} \nabla$$

$$\partial_{t} \mathcal{K}^{\text{fixed pt}} = -\frac{1}{3} \left[\partial^{3}, \mathcal{K}^{\text{fixed pt}} \right]$$
$$\partial_{x} \mathcal{K}^{\text{fixed pt}} = -\frac{1}{2} \partial^{2} \mathcal{K}^{\text{fixed pt}} - \frac{1}{2} \mathcal{K}^{\text{fixed pt}} \partial^{2}$$

Integrable equations for PNG

Thm: [Matetski-Quastel-R '22] $F_r(t,x) = \mathbb{P}(h(t,x) \le r)$ satisfies the 2D Toda equation

$$\frac{1}{4}(\partial_t^2 - \partial_x^2)\log F_r = \frac{F_{r+1}F_{r-1}}{F_r^2} - 1$$

$$F_r(t, x) = 0 \text{ for } r > \sup_{|y-x| \le t} h_0(y)$$
or any LIC PNG initial condition h_0

Multipoint version:

$$F(t, \vec{x}, \vec{r}) = \mathbb{P}(h(t, x_i) \le r_i, i = 1, ..., n)$$

$$x = x_1 + \dots + x_n, r = (r_1, \dots, r_n)$$

$$\frac{F(t, x_1, \dots, x_n, r_1 + 1, \dots, r_n + 1)}{F(t, x_1, \dots, x_n, r_1, \dots, r_n)} = \det Q_r$$
with Q_r satisfying the non-Abelian 2D Toda equations

$$\frac{1}{4}\partial_{t-x}(\partial_{t+x}Q_rQ_r^{-1}) + Q_rQ_{r-1}^{-1} - Q_{r+1}Q_r^{-1} = 0.$$

Flat: $g_r(t) = \log F_r(2t) - \log F_{r-1}(2t)$ satisfies $\ddot{g}_r = e^{g_{r+1}-g_r} - e^{g_r-g_{r-1}}$ (classic Toda lattice) $\varepsilon^{1/2}h(\varepsilon^{-3/2}t,\varepsilon^{-1}x) - 2\varepsilon^{-1}t$ (PNG) $\longrightarrow \qquad \mathfrak{h}(t,x)$ (KPZ fixed pt.)

 \longrightarrow under $F(t, x, r) \longmapsto F(\varepsilon^{3/2}t, \varepsilon x, \varepsilon^{1/2}(x-2t))$,

$$\frac{1}{4}(\partial_t^2 - \partial_x^2) \log F_r = \frac{F_{r+1}F_{r-1}}{F_r^2} - 1 \quad (\text{2D Toda})$$
$$\xrightarrow{\phi = \partial_r^2 \log F}_{\varepsilon \to 0} \quad \partial_r \left(\partial_t \phi + \phi \partial_r \phi + \frac{1}{12} \partial_r^3 \phi\right) + \frac{1}{4} \partial_x^2 \phi = 0 \quad (\text{KP equation})$$

And there's a multipoint version: $\partial_r \log(F) = tr(\mathbf{Q})$ with the $n \times n$ matrices \mathbf{Q} and $\mathbf{q} = \partial_r \mathbf{Q}$ solving

$$\partial_t \mathbf{q} + \frac{1}{2} \partial_r \mathbf{q}^2 + \frac{1}{12} \partial_r^3 \mathbf{q} + \frac{1}{4} \partial_x^2 \mathbf{Q} + \frac{1}{2} (\mathbf{q} \partial_x \mathbf{Q} - \partial_x \mathbf{Q} \mathbf{q}) = 0.$$

(matrix KP equation)

Limiting equations derived earlier in [Quastel-R '19]

The Tracy-Widom distributions arise simply from the 1:2:3 scaling invariance of the KPZ fixed point as self-similar solutions of KP

Similar for narrow-wedge/TW-GUE