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The KPZ universality class
Ï Broad collection of models, including: interface growth

models, directed polymers, interacting particle systems,
reaction-diffusion models, randomly forced Hamilton-Jacobi
equations.

Ï Main feature: t1/3 scale of fluctuations, decorrelating at a
t2/3 spatial scale.

Ï Three special classes of initial data (scale invariance): curved,
flat and stationary. Exact computations show that limiting
fluctuations are related to random matrix theory (RMT).



KPZ ←→ RMT ? The curved case

Ï Very well-understood.

Ï Limiting fluct. described by the Tracy-Widom FGUE distr.:

Let A be a matrix from the Gaussian Unitary Ensemble:
A is an Hermitian N ×N matrix with

Aij =N (0,1/4)+ iN (0,1/4) for i > j, Aii =N (0,1/2)
and let λ1 <λ2 < ·· · <λN be its eigenvalues. Then

FGUE(r) = lim
N→∞P

(
λN ≤ 4

p
N +2N−1/6r

)
.

Ï Simplest version of the curved/GUE connection (next slide):
non-intersecting B.M. ←→ Dyson B.M.

Ï Other (deep) connections are available for many models:
integrable probability (Macdonald processes, RSK, quantum
integrable systems...).
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Non-intersecting Brownian bridges(
B1(t) < B2(t) < ·· · < BN (t)

)
t∈[0,1]: N non-intersecting Brownian

bridges from 0 to 0.

One of the canonical, and most studied, models of non-intersecting
line ensembles in the KPZ class. It is exactly solvable.

In particular,
(
Bi(t)

)
i=1,...,N

(d)=
(√

2t(1− t)λi

)
i=1,...,N

.

So it is also an RMT model!
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In fact, more is true :

If each entry of A undergoes an
Ornstein-Uhlenbeck diffusion then
λ1(t) <λ2(t) < ·· · <λN (t), known as
Dyson Brownian motion, defines a
stationary process such that

λN (t)

λ2(t)

λ3(t)

λ1(t)

(
Bi(t)

)
i=1,...,N

(d)=
(√

2t(1− t)λi(
1
2 log(t/(1− t)))

)
i=1,...,N

.

Even more, one has
p

2N1/6
(
λN (N−1/3t)−p

2N
)
−−−−→
N→∞ A2(t),

which means 2N1/6
(
BN

(1
2 (1+N−1/3t)

)−p
N

)
−−−−→
N→∞ A2(t)− t2.

A2 is the Airy2 process, which describes the spatial fluctuations of
models in the KPZ class with curved initial data.
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KPZ ←→ RMT ? The flat case

Ï Limiting fluct. described by the Tracy-Widom FGOE distr.
associated to the Gaussian Orthogonal Ensemble, the real
symmetric analogue of the GUE.

Ï Most models are much more difficult to study in the flat case.
Integrable methods seem to break down, except in the
simplest situations.

Ï The flat/GOE connection is essentially not understood at all.

Ï In any case, it is clear that the flat/GOE connection is
necessarily more tenuous than the curved/GUE case.

For ex., it is known that the top line of the GOE Dyson B.M.
does not converge to the Airy1 process.

Our goal: provide an explanation of the flat/GOE connection.

We use non-intersecting Brownian bridges, but focus on

MN = max
t∈[0,1]

BN (t).
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A slight detour (1): the Gaussian Orthogonal Ensemble

Consider a matrix A from the Gaussian Orthogonal Ensemble
(GOE): A is an N ×N (real) symmetric matrix with

Aij =N (0,1) for i > j and Aii =N (0,2).

The eigenvalues concentrate on [−2
p

N ,2
p

N], and the largest one
satisfies

lim
N→∞P

(
λGOE(N) ≤ 2

p
N +N−1/6r

)= FGOE(r)

[Tracy-Widom ’96]

with FGOE(r) = det(I −P0BrP0)L2(R),

For a GOE matrix the joint density of the eigenvalues (λ1, . . . ,λN ) is

1

ZN

N∏
i=1

e−
1
4λ

2
i

∏
1≤i<j≤N

|λi −λj|.

The weights e−λ
2/4 are those associated to the Hermite polynomials.
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Br(x,y) = Ai(x+y+ r),

and the Fredholm determinant is defined as

det(I −K )L2(R) =
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n=0

(−1)n

n!

∫
Rn

det
[

K (xi,xj)
]n

i,j=1
d~x.
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A slight detour (2): LPP and the Airy2 process

ωi,j

π

i.i.d. geometric waiting times
ωi,j, i, j ∈Z+.

Gpt(m,n) = max
π:(0,0)→(m,n)

m+n∑
i=0

wπi .

(point-to-point last passage time)

Last passage time fluctuations:

Gpt(N ,N)− c1N

c2N1/3
−−−−→
N→∞ ζGUE.

[Johansson ’00]
Spatial fluctuations: Let

HN (u) = G(N + c3N2/3u,N − c3N2/3u)− c1N

c2N
1
3

.

Then HN (u) −−−−→
N→∞ A2(u)−u2 with A2 the Airy2 process.

[Prähofer-Spohn ’01, Johansson ’03]
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Point-to-line last passage percolation

ωi,j
π

χ(N)
t

x

(N ,N)
Now choose the path which maximizes the
passage time among all paths π of length 2N

χ(N): endpoint of the maximizing path

Gline(N) = max
|u|≤N

Gpt(N −u,N +u).

In particular

Gline(N)− c1N

c2N1/3
= max

u∈c−1
3 N−2/3Z, |u|≤c−1

3 N1/3
HN (u)

≈ 41/3ζGOE as N →∞
[Baik-Rains ’00, Borodin-Ferrari-Sasamoto ’08]

and therefore

�



�
	sup

u∈R

{
A2(u)−u2} (d)= 41/3ζGOE [Johansson ’03]
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Back to non-intersecting Brownian bridges

Recall that

2N1/6
(
BN

(1
2 (1+N−1/3t)

)−p
N

)
−−−−→
N→∞ A2(t)− t2 (?)

(in the sense of finite-dimensional distributions).

This suggests that�
�

�
2N1/6

(
max
t∈[0,1]

BN (t)−
p

N

)
−−−−→
N→∞ 41/3ζGOE

Proving this was the subject of intense research in the physics literature
[Schehr, Majumdar, Rambeau, Comtet, Randon-Furling, Forrester ’08-’12].

It was proved rigorously for Brownian br. on the half-line in [Liechty ’12].

It actually follows from a stronger version of (?) in [Corwin-Hammond ’14]

(and also from our main theorem).
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We may rewrite the result as�



�
	max

t∈[0,1]
BN (t) =

p
N +2−1/3N−1/6ζGOE +o(N−1/6) as N →∞

Question: Is there non-asymptotic (i.e. finite N) version of this
identity?

Somewhat suprisingly, the answer is yes.

Obs: The case N = 1 is easy. By the reflection principle,

P
(

max
t∈[0,1]

BN (t) ≤ r
) = 1−e−r2 = P(χ2

2 ≤ 2r2).

Observe that χ2
2

(d)= (Z1 Z2) ·
(

Z1
Z2

)
with Z1,Z2 independent N (0,1).
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The Laguerre Orthogonal Ensemble

Let X be an n×N matrix with i.i.d. N (0,1) entries (n > N).

Then M = XTX is said to be a matrix from the Laguerre Orthogonal
Ensemble (LOE) (also called a Wishart matrix).

The joint density of the eigenvalues of M is now given by

1

ZN

∏
1≤i<j≤N

|λi −λj|
N∏

i=1
λa

i e−λi/2,

where the parameter a is defined to be a = 1
2 (n−N −1). The weights

λae−λ/2 are those associated to the Laguerre polynomials.

Now the eigenvalues concentrate on [0,4N]. The fluctuations at the
soft edge coincide with those of GOE [Johnstone ’01]: if a is a constant,
then

2−4/3N−1/3(λLOE(N)−4N
)−−−−→

N→∞ ζGOE.
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Main result
Take a = 0 (which means X is size (N +1)×N) and let FLOE,N be the
distribution of the largest eigenvalue of M = XTX .

Theorem (Nguyen-R ’15)

P

(
max
t∈[0,1]

p
2BN (t) ≤ r

)
= FLOE,N (2r2).

In other words, 4 max
t∈[0,1]

BN (t)2 is distributed as the largest eigenvalue

of an LOE matrix.

There is a Dyson Brownian motion version of this result:

Theorem (Nguyen-R ’15)

P
(
λN (t) ≤ rcosh(t) ∀ t ∈R

)
= FLOE,N (2r2).

maxt∈[0,1] BN (t)
(d)≈ p

N +2−1/3N−1/6ζGOE, and thus also

supu∈R
{
A2(u)−u2

} (d)= 41/3ζGOE, follow as a corollary.
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The proof

There are formulas for the distribution of max
t∈[0,1]

BN (t) in the

literature (obtained by path-integral techniques) but they do not
make apparent any connection to a random matrix ensemble.

Instead we derive a new formula for the distribution of max
t∈[0,1]

BN (t),

by a different method, which is suggestive of such a connection.

Our proof is done at the level of Dyson Brownian motion. It has two
steps:

1. Derive an expression for P
(
λN (t) ≤ r cosh(t) ∀ t ∈R

)
.

2. Show that the result coincides with FLOE,N (2r2).
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Extended Hermite kernel

Let λN (t) be the top line in Dyson Brownian motion. Then for
t1 < t2 < . . . < tn and r1, . . . ,rn ∈R,

P
(
λN (tj) ≤ rj, j = 1, . . . ,n

)= det
(
I − fHext

N f
)

L2({t1,...,tn}×R),

where f(tj,x) = 1x∈(rj ,∞) and

Hext
N (s,x; t,y) =


N−1∑
n=0

en(s−t)ϕn(x)ϕn(y) if s ≥ t,

−
∞∑

n=N
en(s−t)ϕn(x)ϕn(y) if s < t.

Here the ϕn are the Hermite or harmonic oscillator functions

ϕn(x) = e−x2/2pn(x) with pn the n-th normalized Hermite

polynomial. They satisfy
∫
R

dxϕn(x)ϕm(x) = 1n=m.

Note that we need to take n →∞. This was done for the Airy2

process in [Corwin-Quastel-R ’13].
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t1 < t2 < . . . < tn and r1, . . . ,rn ∈R,

P
(
λN (tj) ≤ rj, j = 1, . . . ,n

)= det
(
I − fHext

N f
)

L2({t1,...,tn}×R),

where f(tj,x) = 1x∈(rj ,∞) and

Hext
N (s,x; t,y) =


N−1∑
n=0

en(s−t)ϕn(x)ϕn(y) if s ≥ t,

−
∞∑

n=N
en(s−t)ϕn(x)ϕn(y) if s < t.

Here the ϕn are the Hermite or harmonic oscillator functions

ϕn(x) = e−x2/2pn(x) with pn the n-th normalized Hermite polynomial.

They satisfy
∫
Rdxϕn(x)ϕm(x) = 1n=m.

Note that we need to take n →∞. This was done for the Airy2

process in [Corwin-Quastel-R ’13].



Path integral kernel for DBM

Let HN (x,y) =
N−1∑
n=0

ϕn(x)ϕn(y) and D =−1
2 [∆−x2 +1].

Then

P
(
λN (tj) ≤ rj, j = 1, . . . ,n

)
= det

(
I −HN + P̄r1 e(t1−t2)DP̄r2 e(t2−t3)D · · · P̄rn e(tn−t1)DHN

)
L2(R).

where P̄af (x) = 1x≤af (x).
[Borodin-Corwin-R ’15]

For g ∈ H1([`,r]), letting ri = g(ti) and taking n →∞, one gets

P
(
λN (t) ≤ g(t) for t ∈ [`,r]

)= det
(
I −HN +Θg

[`,r]e
(r−`)DHN

)
,

where Θg
[`1,`2]f (x) = u(`2,x) is the solution operator at time `2 of the

boundary value problem{
∂tu+Du = 0 x < g(t)

u(t,x) = 0 x ≥ g(t)

}
with u(`1,x) = f (x).



Path integral kernel for DBM

Let HN (x,y) =
N−1∑
n=0

ϕn(x)ϕn(y) and D =−1
2 [∆−x2 +1].

Then

P
(
λN (tj) ≤ rj, j = 1, . . . ,n

)
= det

(
I −HN + P̄r1 e(t1−t2)DP̄r2 e(t2−t3)D · · · P̄rn e(tn−t1)DHN

)
L2(R).

where P̄af (x) = 1x≤af (x).
[Borodin-Corwin-R ’15]

For g ∈ H1([`,r]), letting ri = g(ti) and taking n →∞, one gets

P
(
λN (t) ≤ g(t) for t ∈ [`,r]

)= det
(
I −HN +Θg

[`,r]e
(r−`)DHN

)
,

where Θg
[`1,`2]f (x) = u(`2,x) is the solution operator at time `2 of the

boundary value problem{
∂tu+Du = 0 x < g(t)

u(t,x) = 0 x ≥ g(t)

}
with u(`1,x) = f (x).



Consider

{
∂t u− 1

2 (∂2
x −x2 +1)u = 0 x < g(t)

u(t,x) = 0 x ≥ g(t)

}
with u(`1,x) = f (x).

Setting u(t,x) = ex2/2+t v(τ,z) and α= 1
4 e`1 , β= 1

4 e`2 , τ= 1
4 e2t , z = et x,

leads to the standard heat equation{
∂τv−∂2

z v = 0 z <p
4τg(log(4τ)/2)

v(τ,z) = 0 z ≥p
4τg(log(4τ)/2)

}
with v(α,z) = e−

1
8α z2− 1

2 log(4α)f ( 1p
4α

z)1
z<p4τg( 1

2 log(4τ))
.

By Feynman-Kac this gives

Θ
g
[`1,`2](x,y) = e

1
2 (y2−x2)+`2

e−(e`1 x−e`2 y)2/(4(β−α))√
4π(β−α)

×Pb̂(α)=e`1 x, b̂(β)=e`2 y

(
b̂(t) ≤p

4t g
( 1

2 log(4t)
) ∀ t ∈ [α,β]

)
.

Now if g(t) = r cosh(t) we get
p

4t g
( 1

2 log(4t)
)= 2rt + 1

2 r

−→ the probability is explicit (by the reflection principle).
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The result is

Θr cosh(t)
[−L,L] = P̄rcosh(L)

(
e−2LD −R(r)

L

)
P̄rcosh(L)

with R(r)
L (x,y) = 1p

4π(β−α)
e

1
2 (y2−x2)+L−r(eLy−e−Lx)+r2(β−α)− 1

4(β−α) (e−Lx+eLy−2r(α+β)−r)2

.

We want to compute

P (λN (t) ≤ r cosh(t) ∀ t ∈R) = lim
L→∞det

(
I −HN +Θr cosh(t)

[−L,L] e2LDHN

)

= lim
L→∞det

(
I −HN +eLDHNΘ

r cosh(t)
[−L,L] eLDHN

)
= lim

L→∞det
(
I −HN +eLDHN

(
e−2LD −R(r)

L

)
eLDHN +error

)
= lim

L→∞det
(
I −eLDHN R(r)

L eLDHN +error
)

.
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Theorem

P (λN (t) ≤ r cosh(t) ∀ t ∈R) = det
(
I −HN%rHN

)
.

Now this is interesting because:

Ï [CQR ’13] proved, using similar arguments, that

P
(
A2(t) ≤ t2 + r ∀ t ∈R)= det

(
I −KAi%rKAi

)
.

Ï det
(
I −KAi%rKAi

)= det
(
I −P0B41/3rP0

)
(easy)

= FGOE(41/3r).

Ï HN is the correlation kernel of the GUE eigenvalues.

Ï HN −→ KAi.

This already gives the GOE asymptotics for MN .

On the other hand, it is not clear a priori what det
(
I −HN%rHN

)
is,

nor what it has to do with LOE.
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Connection with LOE
Correlation kernels for orthogonal ensembles in RMT are not as
simple as in the unitary case. To get around this we use a fact from
[Forrester-Rains ’04].

Take two independent LOE matrices, put all the 2N eigenvalues
together in increasing order, and let λ̄(1) < ·· · < λ̄(N) be the ones
with even labels. Then the superimposed ensemble (λ̄(i))i=1,...,N has a
simple correlation kernel:

L̃N (x,y) =− ∂

∂x

∫ y

0
duLN (x,u)

with

LN (x,y) =
N−1∑
n=0

ψn(x)ψn(y).

Here the ψn are the Laguerre functions ψn(x) = e−x/2qn(x)
with qn the n-th normalized Laguerre polynomial. They satisfy∫ ∞

0
dx ψn(x)ψm(x) = 1n=m.



This implies

P(λLOE(N) ≤ 2r2)2 =P(λ̄(N) ≤ 2r2) = det
(
I −P2r2 L̃N P2r2

)
.

But L̃N is a finite rank operator, and thus the Fredholm determinant
can be written as a the determinant of a finite matrix.

we get
P(λLOE(N) ≤ 2r2)2 = det[I −G+R1RT

2 ]

with

Gij =
∫ ∞

2r2
dx ψi(x)ψj(x), (R1)i =ψi(2r2) and (R2)i =

∫ 2r2

0
duψi(u).

Similarly,

det
(
I −HN%rHN

)= det[I −M] with Mij =
∫
R

dxϕi(x)ϕj(x).

(A somewhat similar formula was obtained in [Rambeau-Schehr ’10])
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So we need to show that

det[I −M]2 = det[I −G+R1RT
2 ].

The proof is relatively long. The key step is the following:

Lemma

Let M̃ij = (−1)N (
ψi+j−N (2r2)−ψi+j−N+1(2r2)

)
for i, j ∈ {0, . . . ,N −1}.

Then:

(1) det[I −M] = det[I −M̃].

(2) (M̃)2 = G.

(3) M̃−1R1 and (I −M̃)−1R2 are explicit and simple.

The proof uses generating functions and contour integral formulas
for Hermite and Laguerre polynomials and several ad-hoc
combinatorial identities involving them.
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Formulas for Brownian bridges on the half-line

We can also consider non-intersecting Brownian bridges on a
half-line, with either absorbing or reflecting boundary conditions
(corresponding to Brownian excursions and reflected Brownian
motions).

The story is analogous, with the following modifications:

Ï The Hermite kernels get replaced by

K odd
Herm,N (x,y) =∑N−1

n=0 ϕ2n+1(x)ϕ2n+1(y) in the abs. case

K even
Herm,N (x,y) =∑N−1

n=0 ϕ2n(x)ϕ2n(y) in the refl. case

Ï The boundary value PDE is solved in [0,∞), with an additional
Dirichlet boundary condition in the abs. case.

Ï Feynman-Kac gives formulas in terms of reflected Brownian
motion.
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Let

%be
r f (x) = 2

∞∑
k=1

f (2kr−x) and %rbb
r f (x) = 2

∞∑
k=1

(−1)k+1f (2kr−x).

Theorem

P

(
max
t∈[0,1]

p
2Bbe

N (t) ≤ r

)
= det

(
I−K odd

Herm,N%
be
r K odd

Herm,N

)
L2(R)

and

P

(
max
t∈[0,1]

p
2Brbb

N (t) ≤ r

)
= det

(
I−K even

Herm,N%
rbb
r K even

Herm,N

)
L2(R)

.

In particular, this yields

lim
N→∞P

(
27/6N1/6(M be

N −
p

2N) ≤ r
)
= FGOE(41/3r)

lim
N→∞P

(
27/6N1/6(M rbb

N −
p

2N) ≤ r
)
= FGOE(41/3r)
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