MA33A- Cálculo Numérico Solución Control 1 - Primayera/2003

Profs. María Leonor VARAS Jorge A. SAN MARTÍN Fecha: Jueves 25 de Septiembre de 2003.

Solución P1.

Parte (a) Se impone que la fórmula sea exacta para los polinomios $1, x, x^2, ..., x^4$ obteniendose las cinco ecuaciones siguientes:

$$A + B + C = 2 \tag{1}$$

$$B - C = 0 (2)$$

$$B+C = 2/3 \tag{3}$$

$$B - C = 0 (4)$$

$$B + C + 2 \cdot 4!D = 2/5 \tag{5}$$

Las ecuaciones (1)–(3) entregan los valores $A = \frac{4}{3}$, $B = C = \frac{1}{3}$.

La ecuación (4) coincide con la (2) y por lo tanto es automáticamente satisfecha.

La ecuación (5) entrega el valor $D = \frac{-1}{30 \cdot 3!} = \frac{-1}{180}$.

Parte (b) Por construcción la fórmula es exacta para polinomios de grado inferior o igual a 4. Por lo tanto la precisión es mayor o igual a 4.

Veamos ademas que pasa con $f(x) = x^5$:

Claramente $\int_{-1}^{1} x^5 dx = 0$ y $I(x^5) = \frac{1}{3}(1-1) - \frac{1}{180}(0) = 0$. Por lo tanto la precisión es mayor o igual a 5. Vemaos que pasa con $f(x) = x^6$:

Por un lado $\int_{-1}^{1} x^6 dx = \frac{2}{7}$. Por otro, $I(x^6) = \frac{1}{3}(1+1) - \frac{1}{180}(6 \cdot 5 \cdot 4 + 6 \cdot 5 \cdot 4) = -\frac{2}{3}$. Como estos valores no coinciden entonces la precisión no es mayor que 5.

Conclusión: La precisión de la fórmula es 5.

Parte (c) Se postula

$$\int_{-1}^{1} f(x)dx = I(f) + Kf^{(n)}(\xi).$$

Como la precisión de la fórmula es 5, el valor de n debe ser necesariamente n = 6.

Para evaluar K veamos que sucede con esta fórmula para $f(x) = x^6$.

$$\frac{2}{7} = -\frac{2}{3} + K \cdot 6!.$$

De aquí se deduce que $K = \frac{1}{21 \cdot 36}$.

Solución P2.

Parte (a) Usando la fórmula del trapecio la ecuación para despejar y(b) es

$$y(b) \approx y(a) + \frac{y(a) + y(b)}{2}(b - a).$$

Despejando, si $b - a \neq 2$, se obtiene

$$\bar{y}_b = y(a) \frac{1 + \frac{b-a}{2}}{1 - \frac{b-a}{2}} \tag{6}$$

Parte (b) Aplicando (6) en $[0, \frac{1}{2}]$ se obtiene $\bar{y}_{\frac{1}{2}} = \frac{1 + \frac{1}{4}}{1 - \frac{1}{4}} = \frac{5}{3}$.

Aplicando (6) en $[\frac{1}{2}, 1]$ se obtiene $\bar{y}_1 = \bar{y}_{\frac{1}{2}} \cdot \frac{1 + \frac{1}{4}}{1 - \frac{1}{4}} = \frac{5}{3} \cdot \frac{5}{3} = \frac{25}{9}$.

Parte (c) Usanado la fórmula de Simpson en [0, 1] se obtiene

$$y(1) \approx y(0) + \frac{1}{6} \left(y(0) + 4y(\frac{1}{2}) + y(1) \right).$$

Despejando una aproximación para y(1) sería

$$y(1) \approx \frac{7}{5}y(0) + \frac{4}{5}y(\frac{1}{2}).$$

Si usamos el valor aproximado de $y(\frac{1}{2}) \approx \frac{5}{3}$ dado en la parte anterior se obtiene

$$\tilde{y}_1 = \frac{7}{5} + \frac{4}{5} \cdot \frac{5}{3} = \frac{21 + 20}{15} = \frac{41}{15}.$$

Parte (d) La dos estimaciones encontradas para $e \operatorname{son} \bar{y}_1 e \tilde{y}_1$ que valen

$$\bar{y}_1 = \frac{25}{9} = \frac{125}{45},$$
 $\tilde{y}_1 = \frac{41}{15} = \frac{123}{45}.$

Como $e \approx \frac{122,32}{45}$ entonces claramente la aproximación obtenida con Simpson es mejor que la con trapecios reiterados. Esto se debe a que la fórmula de Simpson es de mayor precisión que la fórmula de Trapecios.

Solución P3.

Parte (a) Para determinar *P* construimos una tabla de diferencias divididas repitiendo 2 veces el punto −2. Es decir

i	x_i	$f[x_i]$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
0	-2	0=P(-2)	m = P'(-2)	0 = P''(-2)	$\frac{(1-m)-0}{(-1)-(-2)} = 1 - m$
1	-2	0=P(-2)	m = P'(-2)	$\frac{1-m}{(-1)-(-2)} = 1-m$	
2	-2	0=P(-2)	$\frac{1-0}{(-1)-(-2)} = 1$		
3	-1	1=P(-1)			

Con esto se obtiene

$$P(x) = 0 + m(x+2) + 0(x+2)^{2} + (1-m)(x+2)^{3} = m(x+2) + (1-m)(x+2)^{3}.$$

Para determinar R construimos una tabla de diferencias divididas repitiendo 2 veces el punto 2. Es decir

i	x_i	$f[x_i]$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
0	1	1=R(1)	$\frac{0-1}{2-1} = -1$	$\frac{(-m)-(-1)}{2-1} = 1 - m$	$\frac{0 - (1 - m)}{2 - 1} = m - 1.$
1	2	0=R(2)	-m=R'(2)	0 = R''(2)	
2	2	0=R(2)	-m=R'(2)		
3	2	0=R(2)			

Con esto se obtiene

$$R(x) = 1 + (-1)(x-1) + (1-m)(x-1)(x-2) + (m-1)(x-1)(x-2)^2, \text{ o bien,}$$

= 0 + (-m)(x-2) + (0)(x-2)^2 + (m-1)(x-2)^3 = -m(x-2) + (m-1)(x-2)^3

Parte (b) El polinomio Q debe valer 1 en -1 y 1. Además sus derivadas deben coincidir con las de P y R respectivamente en -1 y 1.

Pero

$$P'(x) = m+3(1-m)(x+2)^2,$$

 $R'(x) = -m+3(m-1)(x-2)^2,$

luego en los respectivos puntos se obtiene

$$P'(-1) = 3-2m,$$

 $R'(1) = 2m-3.$

Con esto, Q se obtiene de la siguiente tabla de diferencias divididas donde se repiten una vez respectivamente los puntos -1 y 1. Es decir

i	x_i	$f[x_i]$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
0	-1	1	3 - 2m = P'(-1)	$\frac{0 - (3 - 2m)}{1 - (-1)} = m - \frac{3}{2}$	$\frac{\binom{m-\frac{3}{2}-(m-\frac{3}{2})}{1-(-1)}=0$
1	-1	1	$\frac{1-1}{1-(-1)} = 0$	$\frac{(2m-3)-0}{1-(-1)} = m - \frac{3}{2}$	
2	1	1	2m-3=R'(1)		
3	1	1			

Por lo tanto

$$Q(x) = 1 + (3 - 2m)(x + 1) + (m - \frac{3}{2})(x + 1)^{2} + 0(x + 1)^{2}(x - 1)$$
$$= 1 + (3 - 2m)(x + 1) + (m - \frac{3}{2})(x + 1)^{2}.$$

Parte (c) La función g(x) se transforma en la Spline cúbica si en x = -1 y x = 1 la segunda derivada es continua.

Calculemos P'', Q'' y R'':

$$P''(x) = 6(1-m)(x+2),$$

 $R''(x) = 6(m-1)(x-2),$
 $Q''(x) = 2(m-\frac{3}{2}) = 2m-3.$

En los puntos -1 y 1 se obtiene

$$P''(-1) = 6(1-m),$$

 $R''(1) = 6(1-m),$
 $Q''(-1) = Q''(1) = 2m-3.$

Por lo tanto la segunda derivada es continua si la constante m satisface la ecuación 6-6m=2m-3. Es decir, la constante mdebe ser igual a $\frac{9}{8}$.

Con esto, la Spline a la izquierda de -2 es la recta de ecuación $\frac{9}{8}(x+2)$.

Análogamente, la Spline a la derecha de 2 es la recta de ecuación $-\frac{9}{8}(x-2)$.