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Classical / multiple-choice Secretary Problem

Rules
1 Given a set E of elements with hidden nonnegative weights.

2 Each element reveals its weight in uniform random order.
3 We accept or reject before the next weight is revealed.
4 Maintain a feasible set: Set of size at most r .

5 Goal: Maximize the sum of weights of selected set.
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Matroid secretary problem
Babaioff, Immorlica, Kleinberg [SODA07]

Rules
1 Given a set E of elements with hidden nonnegative weights.

E is the ground set of a known matroidM = (E , I).
2 Each element reveals its weight in uniform random order.
3 We accept or reject before the next weight is revealed.
4 Maintain a feasible set: Set of size at most r .

Feasible set = Independent Set in I.
5 Goal: Maximize the sum of weights of selected set.
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Algorithms for classical problem (uniform matroid).

For r = 1: Dynkin’s Algorithm

︸ ︷︷ ︸
n/e

Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. ≥ 1/e.

General r

︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

· · · ︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

Divide in r classes and apply Dynkin’s algorithm in each class.

Each of the r top weights is the best of its class with prob.
≥ (1− 1/r)r−1 ≥ C > 0. Thus it is selected with prob. ≥ C/e.
e/C (constant) competitive algorithm.
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Harder example: Gammoid

Servers
Clients← Elements.
Connections

Independent Sets:
Clients that can be simultaneously
connected to Servers using
edge-disjoint paths.
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Models of Weight Assignment:

1 Adversarial Assignment:
Hidden weights are arbitrary.

O(1)-competitive alg. for partition, graphic, transversal, laminar.
[L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11]

O(log rk(M))-competitive algorithms for general matroids.
[BIK07]

2 Random Assignment:
A hidden (adversarial) list of weights is assigned uniformly.

3 Unknown distribution:
Weights selected i.i.d. from unknown distribution.

4 Known Distribution:
Weights selected i.i.d. from known distribution.
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Random Assignment.

Data:
Known matroidM = (E, I) on n elements.
Hidden list of weights: W : w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn ≥ 0.
Random assignment. σ : W → E .
Random order. π : E → {1, . . . ,n}.

Objective
Return an independent set ALG ∈ I such that:

Eπ,σ[w(ALG)] ≥ α · Eσ[w(OPT)], where

w(S) =
∑

e∈S σ
−1(e).

OPT is the optimum base ofM under assignment σ. (Greedy)
α: Competitive Factor.
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Divide and Conquer to get O(1)-competitive algorithm.

For a general matroidM = (E , I):
Find matroidsMi = (Ei , Ii) with E =

⋃k
i=1 Ei .

1 Mi admits O(1)-competitive algorithm
(Easy parts).

2 Union of independent sets in eachMi is
independent inM. I(

⊕k
i=1Mi) ⊆ I(M).

(Combine nicely).

3 Optimum in
⊕k

i=1Mi is comparable with
Optimum inM. (Don’t lose much).

M1,E1

M,E

M2,E2

Mk ,Ek

...
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(Easy matroids): Uniformly dense matroids are like
Uniform

Definition (Uniformly dense)
A loopless matroidM = (E , I) is uniformly dense if

|F |
rk(F )

≤ |E |
rk(E)

, for all F 6= ∅.

e.g. Uniform (rk(F ) = min(|F |, r)). Graphic Kn. Projective Spaces.

Property: Sets of rk(E) elements have almost full rank.

E(X :|X |=rk(E))[rk(X )] ≥ rk(E)(1− 1/e).
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Uniformly dense matroid: Simple algorithm

· · ·

Lemma: Constant competitive algorithm for Uniformly Dense.

Eπ,σ[w(ALG)] ≥ C
e

(
1− 1

e

)
︸ ︷︷ ︸

K

r∑
i=1

wi ≥ K · Eπ[w(OPTM)].

In fact: Eπ,σ[w(ALG)] ≥ K · Eσ[w(OPTP)],

where P is the uniform matroid in E with bound r = rkM(E).
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Uniformly Dense (sub)matroids That combine nicely

Densest Submatroid

LetM = (E , I) be a loopless matroid.

Let E1 be the densest set ofM of
maximum cardinality.

γ(M) := max
F⊆E

|F |
rkM(F )

=
|E1|

rkM(E1)
.

M1 =M|E1 is uniformly dense.
M∗ =M/E1 is loopless and

γ(M∗) := max
F⊆E\E1

|F |
rkM∗(F )

< γ(M).

I1 ∈ I1, I∗ ∈ I∗ implies I1 ∪ I∗ ∈ I.

M,E
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Uniformly Dense (sub)matroids That combine nicely

Densest Submatroid

Let E2 be the densest set ofM∗ of
maximum cardinality.
M2 =M∗|E2 is uniformly dense.
M∗∗ =M/(E1 ∪ E2) is loopless and

γ(M∗∗) < γ(M2) < γ(M1) = γ(M).

Iterate...

M1,E1

M,E

M2,E2

M∗∗,
E \ (E1 ∪ E2)
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Principal Partition of a matroid

Theorem (Principal Partition)
GivenM = (E , I) loopless, there exists a partition
E =

⋃k
i=1 Ei such that

1 The principal minor Mi = (M/Ei−1)|Ei

is a uniformly dense matroid with density

λi = γ(Mi) =
|Ei |
ri
.

2 λ1 > λ2 > · · · > λk ≥ 1.

M1,E1

M,E

M2,E2

Mk ,Ek

...

Note:
If Ii ∈ I(Mi), then I1 ∪ I2 ∪ · · · ∪ Ik ∈ I(M).
Can compute the partition in polynomial time.
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Algorithm for a General MatroidM

Algorithm
1 Remove the loops fromM.
2 LetM1,M2, . . . ,Mk be the principal minors.
3 In eachMi use the K -competitive algorithm for uniformly dense

matroids to obtain an independent set Ii .
4 Return ALG = I1 ∪ I2 ∪ · · · ∪ Ik .

· · ·
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Analysis.

From Uniformly Dense Matroids to Uniform Matroids
EachMi is uniformly dense.
Let Pi be the uniform matroid on Ei with bounds ri = rkMi (Ei).

Let P =
⊕k

i=1 Pi be the corresponding partition matroid.

By Lemma: Eπ,σ[w(ALG ∩ Ei)] ≥ K · Eσ[w(OPTPi )].

Hence: Eπ,σ[w(ALG)] ≥ K · Eσ[w(OPTP)].

To conclude we show:

(∗) : Eσ[w(OPTP)] ≥ (1− 1/e) · Eσ[w(OPTM)].

⇔ (∗∗) : E[rkP(Xj)] ≥ (1− 1/e) · E[rkM(Xj)], for all j ,

where Xj is a uniform random set of j elements in E .
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Analysis II: Proof of E[rkP(Xj)] ≥ (1− 1/e) · E[rkM(Xj)].

E[rkP(Xj)] =
k∑

i=1

E[rkP(Xj ∩ Ei)] =
k∑

i=1

E[min(|Xj ∩ Ei |, ri)]

≥
k∑

i=1

(1− 1/e) ·min(E[|Xj ∩ Ei |], ri)

=
k∑

i=1

(1− 1/e) ·min(|Ei |
j
n
, ri).

Since λi = |Ei |/ri is a decreasing sequence, there is an index i∗ = i∗(j)
such that:

E[rkP(Xj)] ≥ (1− 1/e) ·

 i∗∑
i=1

ri +
k∑

i=i∗+1

|Ei |
j
n

 .
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Analysis III: Proof of E[rkP(Xj)] ≥ (1− 1/e) · E[rkM(Xj)].

E[rkP(Xj)] ≥ (1− 1/e) ·

 i∗∑
i=1

ri +
k∑

i=i∗+1

|Ei |
j
n


≥ (1− 1/e) ·

(
rkM(E1 ∪ · · · ∪ Ei∗︸ ︷︷ ︸

E∗

) + |(Ei∗+1 ∪ · · · ∪ Ek )| j
n

)
= (1− 1/e) ·

(
rkM(E∗) + E[|Xj ∩ (E \ E∗)|]

)
≥ (1− 1/e) · E[rkM(Xj ∩ E∗) + rkM(Xj ∩ (E \ E∗)]

≥ (1− 1/e) · E[rkM(Xj)].

Therefore:

Eπ,σ[w(ALG)] ≥ K (1− 1/e) · Eσ[w(OPTM)].
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José Soto - M.I.T. Matroid Secretary - Random Assignment SODA 2011 16



Conclusions and Open Problems.

Summary
First constant competitive algorithm for Matroid Secretary Problem
in Random Assignment Model.
Corollary: Also holds for i.i.d. weights from known or unknown
distributions.
Algorithm does not use hidden weights (only relative ranks).

Open
Find constant competitive algorithm for General Matroids under
Adversarial Assignment.
Extend to other independent systems:
Note[BIK07]: Ω(log(n)/ log log(n)) lower bound.
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