Matroid Secretary Problem in the Random Assignment Model

José Soto

Department of Mathematics M.I.T.

> SODA 2011 Jan 25, 2011.

José Soto - M.I.T.

Matroid Secretary - Random Assignment

SODA 2011 1

Classical / multiple-choice Secretary Problem

Rules

- Given a set *E* of elements with hidden nonnegative weights.
- 2 Each element reveals its weight in uniform random order.
- We accept or reject before the next weight is revealed.
- Maintain a feasible set: Set of size at most r.
- Goal: Maximize the sum of weights of selected set.

Matroid secretary problem

Babaioff, Immorlica, Kleinberg [SODA07]

Rules

- Given a set *E* of elements with hidden nonnegative weights. *E* is the ground set of a known matroid $\mathcal{M} = (E, \mathcal{I})$.
- 2 Each element reveals its weight in uniform random order.
- We accept or reject before the next weight is revealed.
- Maintain a feasible set: Set of size at most r. Feasible set = Independent Set in I.
- Goal: Maximize the sum of weights of selected set.

For r = 1: Dynkin's Algorithm

n/e

• Observe *n*/*e* objects. Accept the first record after that.

Top weight is selected w.p. $\geq 1/e$.

- Divide in *r* classes and apply Dynkin's algorithm in each class.
- Each of the *r* top weights is the best of its class with prob. $\geq (1 - 1/r)^{r-1} \geq C > 0$. Thus it is selected with prob. $\geq C/e$.

n/r

n/r

• Each of the *r* top weights is the best of its class with prob. $\geq (1 - 1/r)^{r-1} \geq C > 0$. Thus it is selected with prob. $\geq C/e$.

n/r

• *e*/*C* (constant) competitive algorithm.

n/r

n/r

Harder example: Gammoid

- Servers
- Clients \leftarrow Elements.
- Connections

Independent Sets:

Clients that can be simultaneously connected to Servers using edge-disjoint paths.

Models of Weight Assignment:

 Adversarial Assignment: Hidden weights are arbitrary.

Pandom Assignment:

A hidden (adversarial) list of weights is assigned uniformly.

Inknown distribution:

Weights selected i.i.d. from unknown distribution.

Known Distribution:

Models of Weight Assignment:

Conjecture [BIK07]: O(1)-competitive algorithm for all these models

 Adversarial Assignment: Hidden weights are arbitrary.

Pandom Assignment:

A hidden (adversarial) list of weights is assigned uniformly.

- Unknown distribution: Weights selected i.i.d. from unknown distribution.
- Known Distribution:

Conjecture [BIK07]: O(1)-competitive algorithm for all these models

Adversarial Assignment:

Hidden weights are arbitrary.

O(1)-competitive alg. for partition, graphic, transversal, laminar. [L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11] $O(\log rk(M))$ -competitive algorithms for general matroids. [BIK07]

- Random Assignment: A hidden (adversarial) list of weights is assigned uniformly.
- Unknown distribution: Weights selected i.i.d. from unknown distribution.
- Mown Distribution:

Conjecture [BIK07]: O(1)-competitive algorithm for all these models

Adversarial Assignment:

Hidden weights are arbitrary.

- O(1)-competitive alg. for partition, graphic, transversal, laminar. [L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11] $O(\log rk(M))$ -competitive algorithms for general matroids. [BIK07]
- Random Assignment: [S11] O(1)-competitive algorithm. A hidden (adversarial) list of weights is assigned uniformly.
- Unknown distribution:
 Weights selected i.i.d. from unknown distribution.
- Mown Distribution:

Random Assignment.

Data:

- Known matroid $\mathcal{M} = (\mathbf{E}, \mathcal{I})$ on **n** elements.
- Hidden list of weights: $W: w_1 \ge w_2 \ge w_3 \ge \cdots \ge w_n \ge 0$.
- Random assignment. $\sigma: W \to E$.
- Random order. $\pi \colon E \to \{1, \ldots, n\}$.

Objective

Return an independent set $ALG \in \mathcal{I}$ such that:

 $\mathbb{E}_{\pi,\sigma}[w(ALG)] \geq \alpha \cdot \mathbb{E}_{\sigma}[w(OPT)], \text{ where }$

•
$$w(S) = \sum_{e \in S} \sigma^{-1}(e).$$

• OPT is the optimum base of \mathcal{M} under assignment σ . (Greedy)

α: Competitive Factor.

Divide and Conquer to get O(1)-competitive algorithm.

For a general matroid $\mathcal{M} = (E, \mathcal{I})$:

Find matroids $\mathcal{M}_i = (E_i, \mathcal{I}_i)$ with $E = \bigcup_{i=1}^k E_i$.

- *M_i* admits *O*(1)-competitive algorithm (Easy parts).
- Union of independent sets in each *M_i* is independent in *M*. *I*(⊕^k_{i=1} *M_i*) ⊆ *I*(*M*). (Combine nicely).
- Solution Optimum in $\bigoplus_{i=1}^{k} \mathcal{M}_i$ is comparable with Optimum in \mathcal{M} . (Don't lose much).

$\mathcal{M}_1, \mathcal{E}_1$	
M ₂ , E ₂	<i>М</i> , Е
\mathcal{M}_k, E_k	

(Easy matroids): Uniformly dense matroids are like Uniform

Definition (Uniformly dense)

A loopless matroid $\mathcal{M} = (E, \mathcal{I})$ is uniformly dense if

$$rac{|F|}{\operatorname{rk}(F)} \leq rac{|E|}{\operatorname{rk}(E)}, ext{ for all } F
eq \emptyset.$$

e.g. Uniform (rk(F) = min(|F|, r)). Graphic K_n . Projective Spaces.

(Easy matroids): Uniformly dense matroids are like Uniform

Definition (Uniformly dense)

A loopless matroid $\mathcal{M} = (E, \mathcal{I})$ is uniformly dense if

$$rac{|F|}{\mathrm{rk}(F)} \leq rac{|E|}{\mathrm{rk}(E)}, ext{ for all } F
eq \emptyset.$$

e.g. Uniform (rk(F) = min(|F|, r)). Graphic K_n . Projective Spaces.

Property: Sets of rk(E) elements have almost full rank.

$$\mathbb{E}_{(X:|X|=\mathrm{rk}(E))}[\mathrm{rk}(X)] \geq \mathrm{rk}(E)(1-1/e).$$

Uniformly dense matroid: Simple algorithm

Uniformly dense matroid: Simple algorithm

- Simulate e/C-comp. alg. for Uniform Matroids with $r = \operatorname{rk}_{\mathcal{M}}(E)$.
- Try to add each selected weight to the independent set.
- Selected elements have expected rank $\geq r(1 1/e)$.

Uniformly dense matroid: Simple algorithm

- Simulate e/C-comp. alg. for Uniform Matroids with $r = \operatorname{rk}_{\mathcal{M}}(E)$.
- Try to add each selected weight to the independent set.
- Selected elements have expected rank $\geq r(1 1/e)$.

Lemma: Constant competitive algorithm for Uniformly Dense.

$$\mathbb{E}_{\pi,\sigma}[w(\text{ALG})] \geq \underbrace{\frac{C}{e} \left(1 - \frac{1}{e}\right)}_{K} \sum_{i=1}^{r} w_i \geq K \cdot \mathbb{E}_{\pi}[w(\text{OPT}_{\mathcal{M}})].$$

In fact: $\mathbb{E}_{\pi,\sigma}[w(\text{ALG})] \geq K \cdot \mathbb{E}_{\sigma}[w(\text{OPT}_{\mathcal{P}})],$

where \mathcal{P} is the uniform matroid in E with bound $r = \operatorname{rk}_{\mathcal{M}}(E)$.

Densest Submatroid

• Let $\mathcal{M} = (E, \mathcal{I})$ be a loopless matroid.

Densest Submatroid

- Let $\mathcal{M} = (E, \mathcal{I})$ be a loopless matroid.
- Let *E*₁ be the densest set of *M* of maximum cardinality.

$$\gamma(\mathcal{M}) := \max_{F \subseteq E} \frac{|F|}{\operatorname{rk}_{\mathcal{M}}(F)} = \frac{|E_1|}{\operatorname{rk}_{\mathcal{M}}(E_1)}$$

• $\mathcal{M}_1 = \mathcal{M}|_{E_1}$ is uniformly dense.

Densest Submatroid

- Let $\mathcal{M} = (E, \mathcal{I})$ be a loopless matroid.
- Let *E*₁ be the densest set of *M* of maximum cardinality.

$$\gamma(\mathcal{M}) := \max_{F \subseteq E} \frac{|F|}{\mathrm{rk}_{\mathcal{M}}(F)} = \frac{|E_1|}{\mathrm{rk}_{\mathcal{M}}(E_1)}.$$

• $\mathcal{M}_1 = \mathcal{M}|_{E_1}$ is uniformly dense.

• $\mathcal{M}^* = \mathcal{M}/E_1$ is loopless and

$$\gamma(\mathcal{M}^*) := \max_{F \subseteq E \setminus E_1} \frac{|F|}{\operatorname{rk}_{\mathcal{M}^*}(F)} < \gamma(\mathcal{M}).$$

• $I_1 \in \mathcal{I}_1, I^* \in \mathcal{I}^*$ implies $I_1 \cup I^* \in \mathcal{I}$.

Densest Submatroid

- Let E₂ be the densest set of M* of maximum cardinality.
- $\mathcal{M}_2 = \mathcal{M}^*|_{E_2}$ is uniformly dense.
- $\mathcal{M}^{**} = \mathcal{M}/(E_1 \cup E_2)$ is loopless and

 $\gamma(\mathcal{M}^{**}) < \gamma(\mathcal{M}_2) < \gamma(\mathcal{M}_1) = \gamma(\mathcal{M}).$

Densest Submatroid

- Let E₂ be the densest set of M* of maximum cardinality.
- $\mathcal{M}_2 = \mathcal{M}^*|_{E_2}$ is uniformly dense.
- $\mathcal{M}^{**} = \mathcal{M}/(E_1 \cup E_2)$ is loopless and

$$\gamma(\mathcal{M}^{**}) < \gamma(\mathcal{M}_2) < \gamma(\mathcal{M}_1) = \gamma(\mathcal{M}).$$

Iterate...

Principal Partition of a matroid

Theorem (Principal Partition)

Given $\mathcal{M} = (E, \mathcal{I})$ loopless, there exists a partition $E = \bigcup_{i=1}^{k} \frac{E_i}{E_i}$ such that

• The principal minor $\mathcal{M}_i = (\mathcal{M}/\mathcal{E}_{i-1})|_{\mathcal{E}_i}$ is a uniformly dense matroid with density

$$\lambda_i = \gamma(\mathcal{M}_i) = \frac{|\mathcal{E}_i|}{r_i}.$$

 $\lambda_1 > \lambda_2 > \cdots > \lambda_k \ge 1.$

Note:

- If $I_i \in \mathcal{I}(\mathcal{M}_i)$, then $I_1 \cup I_2 \cup \cdots \cup I_k \in \mathcal{I}(\mathcal{M})$.
- Can compute the partition in polynomial time.

< ロ > < 同 > < 回 > < 回 >

Algorithm for a General Matroid $\ensuremath{\mathcal{M}}$

Algorithm

- **O** Remove the loops from \mathcal{M} .
- **2** Let $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_k$ be the principal minors.
- In each M_i use the *K*-competitive algorithm for uniformly dense matroids to obtain an independent set I_i .

Algorithm for a General Matroid $\ensuremath{\mathcal{M}}$

Algorithm

- **O** Remove the loops from \mathcal{M} .
- **2** Let $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_k$ be the principal minors.
- In each *M_i* use the *K*-competitive algorithm for uniformly dense matroids to obtain an independent set *I_i*.

Analysis.

From Uniformly Dense Matroids to Uniform Matroids

- Each \mathcal{M}_i is uniformly dense.
- Let \mathcal{P}_i be the uniform matroid on E_i with bounds $r_i = \operatorname{rk}_{\mathcal{M}_i}(E_i)$.
- Let $\mathcal{P} = \bigoplus_{i=1}^{k} \mathcal{P}_i$ be the corresponding partition matroid.

By Lemma: $\mathbb{E}_{\pi,\sigma}[w(ALG \cap E_i)] \ge K \cdot \mathbb{E}_{\sigma}[w(OPT_{\mathcal{P}_i})].$ Hence: $\mathbb{E}_{\pi,\sigma}[w(ALG)] \ge K \cdot \mathbb{E}_{\sigma}[w(OPT_{\mathcal{P}})].$

Analysis.

From Uniformly Dense Matroids to Uniform Matroids

- Each \mathcal{M}_i is uniformly dense.
- Let \mathcal{P}_i be the uniform matroid on E_i with bounds $r_i = \operatorname{rk}_{\mathcal{M}_i}(E_i)$.
- Let $\mathcal{P} = \bigoplus_{i=1}^{k} \mathcal{P}_i$ be the corresponding partition matroid.

By Lemma: $\mathbb{E}_{\pi,\sigma}[w(ALG \cap E_i)] \ge K \cdot \mathbb{E}_{\sigma}[w(OPT_{\mathcal{P}_i})].$ Hence: $\mathbb{E}_{\pi,\sigma}[w(ALG)] \ge K \cdot \mathbb{E}_{\sigma}[w(OPT_{\mathcal{P}})].$

To conclude we show:

(*): $\mathbb{E}_{\sigma}[w(\text{OPT}_{\mathcal{P}})] \ge (1 - 1/e) \cdot \mathbb{E}_{\sigma}[w(\text{OPT}_{\mathcal{M}})].$ \Leftrightarrow (**): $\mathbb{E}[\operatorname{rk}_{\mathcal{P}}(X_j)] \ge (1 - 1/e) \cdot \mathbb{E}[\operatorname{rk}_{\mathcal{M}}(X_j)],$ for all j,

where X_i is a uniform random set of *j* elements in *E*.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis II: Proof of $\mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_j)] \ge (1 - 1/e) \cdot \mathbb{E}[\mathbf{rk}_{\mathcal{M}}(X_j)].$

$$\mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_j)] = \sum_{i=1}^{k} \mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_j \cap E_i)] = \sum_{i=1}^{k} \mathbb{E}[\min(|X_j \cap E_i|, r_i)]$$
$$\geq \sum_{i=1}^{k} (1 - 1/e) \cdot \min(\mathbb{E}[|X_j \cap E_i|], r_i)$$
$$= \sum_{i=1}^{k} (1 - 1/e) \cdot \min(|E_i|\frac{j}{n}, r_i).$$

Since $\lambda_i = |E_i|/r_i$ is a decreasing sequence, there is an index $i^* = i^*(j)$ such that:

$$\mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_j)] \geq (1 - 1/e) \cdot \left(\sum_{i=1}^{i^*} r_i + \sum_{i=i^*+1}^k |E_i| \frac{j}{n}\right).$$

イロト 不得 トイヨト イヨト 二日

Analysis III: Proof of $\mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_j)] \ge (1 - 1/e) \cdot \mathbb{E}[\mathbf{rk}_{\mathcal{M}}(X_j)].$

$$\mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_{j})] \geq (1 - 1/e) \cdot \left(\sum_{i=1}^{i^{*}} r_{i} + \sum_{i=i^{*}+1}^{k} |E_{i}| \frac{j}{n}\right)$$

$$\geq (1 - 1/e) \cdot \left(\mathbf{rk}_{\mathcal{M}}(\underbrace{E_{1} \cup \cdots \cup E_{i^{*}}}_{E^{*}}) + |(E_{i^{*}+1} \cup \cdots \cup E_{k})| \frac{j}{n}\right)$$

$$= (1 - 1/e) \cdot \left(\mathbf{rk}_{\mathcal{M}}(E^{*}) + \mathbb{E}[|X_{j} \cap (E \setminus E^{*})|]\right)$$

$$\geq (1 - 1/e) \cdot \mathbb{E}[\mathbf{rk}_{\mathcal{M}}(X_{j} \cap E^{*}) + \mathbf{rk}_{\mathcal{M}}(X_{j} \cap (E \setminus E^{*})]$$

$$\geq (1 - 1/e) \cdot \mathbb{E}[\mathbf{rk}_{\mathcal{M}}(X_{j})]. \square$$

イロト イヨト イヨト イヨト

Analysis III: Proof of $\mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_j)] \ge (1 - 1/e) \cdot \mathbb{E}[\mathbf{rk}_{\mathcal{M}}(X_j)].$

$$\mathbb{E}[\mathbf{rk}_{\mathcal{P}}(X_{j})] \geq (1 - 1/e) \cdot \left(\sum_{i=1}^{i^{*}} r_{i} + \sum_{i=i^{*}+1}^{k} |E_{i}| \frac{j}{n}\right)$$

$$\geq (1 - 1/e) \cdot \left(\mathbf{rk}_{\mathcal{M}}(\underbrace{E_{1} \cup \cdots \cup E_{i^{*}}}_{E^{*}}) + |(E_{i^{*}+1} \cup \cdots \cup E_{k})| \frac{j}{n}\right)$$

$$= (1 - 1/e) \cdot \left(\mathbf{rk}_{\mathcal{M}}(E^{*}) + \mathbb{E}[|X_{j} \cap (E \setminus E^{*})|]\right)$$

$$\geq (1 - 1/e) \cdot \mathbb{E}[\mathbf{rk}_{\mathcal{M}}(X_{j} \cap E^{*}) + \mathbf{rk}_{\mathcal{M}}(X_{j} \cap (E \setminus E^{*})]$$

$$\geq (1 - 1/e) \cdot \mathbb{E}[\mathbf{rk}_{\mathcal{M}}(X_{j})]. \square$$

Therefore:

$$\mathbb{E}_{\pi,\sigma}[w(\text{ALG})] \geq K(1-1/e) \cdot \mathbb{E}_{\sigma}[w(\text{OPT}_{\mathcal{M}})].$$

José Soto - M.I.T.

3

• • • • • • • • • • • •

Conclusions and Open Problems.

Summary

- First constant competitive algorithm for Matroid Secretary Problem in Random Assignment Model.
- Corollary: Also holds for i.i.d. weights from known or unknown distributions.
- Algorithm does not use hidden weights (only relative ranks).

Open

- Find constant competitive algorithm for General Matroids under Adversarial Assignment.
- Extend to other independent systems:
 Note[BIK07]: Ω(log(n)/ log log(n)) lower bound.

< ロ > < 同 > < 回 > < 回 >