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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
DOCTORA EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MODELACIÓN MATEMÁTICA
POR LAURA MAYELY LEAL CHACÓN
FECHA: 2022
PROF. GUÍAS: IVÁN RAPAPORT, PEDRO MONTEALEGRE

DINÁMICAS LOCALES PARA EL CÁLCULO DE PROPIEDADES GLOBALES EN
GRAFOS

El problema de clasificación de densidad en grafos consiste en encontrar una dinámica
local tal que, dado un grafo y una configuración inicial de 0’s y 1’s asignada a los nodos del
grafo, la dinámica converja a la configuración de punto fijo 1’s si la fracción de 1 es mayor
que una densidad cŕıtica (t́ıpicamente 1/2) y, de lo contrario, converja a la configuración de
punto fijo 0’s. Para resolver este problema seguimos la idea propuesta en un trabajo anterior
[7], donde los autores diseñaron un autómata celular inspirado en dos mecanismos: difusión
y amplificación. Aplicamos este enfoque a diferentes clases de grafos bien conocidos, en los
que se encuentran grafos completos, regulares, de estrella, Erdös-Rényi y Barabási-Albert.

Un conjunto independiente maximal (MIS) es un conjunto maximal por inclusión de
vértices no adyacentes por pares. El cálculo de un MIS es uno de los problemas centrales de
la computación distribuida. En esta tesis presentamos y analizamos un algoritmo aleatorio
distribuido de estado finito para calcular un MIS en grafos arbitrarios no dirigidos. Nuestro
algoritmo es autoestabilizante, es decir, alcanza una salida correcta en cualquier configuración
inicial. Analizamos el tiempo de convergencia del algoritmo propuesto, mostrando que en
muchos casos el algoritmo converge en tiempo logaŕıtmico con alta probabilidad.
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LOCAL DYNAMICS FOR THE CALCULATION OF GLOBAL PROPERTIES IN
GRAPHS

The density classification problem on graphs consists in finding a local dynamics such
that, given a graph and an initial configuration of 0’s and 1’s assigned to the nodes of the
graph, the dynamics converge to the fixed point configuration of all 1’s if the fraction of 1’s is
greater than a critical density (typically 1/2) and, otherwise, it converges to the all 0’s fixed
point configuration. To solve this problem we follow the idea proposed in a previous work
[7], where the authors designed a cellular automaton inspired by two mechanisms: diffusion
and amplification. We apply this approach to different well-known graph classes, including
complete, regular, star, Erdös-Rényi and Barabási-Albert graphs.

A Maximal Independent Set (MIS) is an inclusion maximal set of pairwise non-adjacent
vertices. The computation of an MIS is one of the core problems in distributed computing.
In this thesis, we introduce and analyze a finite-state distributed randomized algorithm for
computing a MIS on arbitrary undirected graphs. Our algorithm is self-stabilizing, that is,
reaches a correct output on any initial configuration and can be implemented on systems with
very scarce conditions. We analyze the convergence time of the proposed algorithm, showing
that in many cases the algorithm converges in logarithmic time with high probability.
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Chapter 1

Introduction

1.1 Density Classification

One of the simplest, regular graph topology is a torus. A cellular automaton (CA) is nothing
but a local dynamics applied to a torus (or to an infinite grid) [39, 37]. More precisely, a
CA consists of nd cells arranged uniformly spaced in the d-dimensional torus and following a
local rule identical in every cell. This local rule, which specifies how the state of each cell is
updated as a function of the states of its neighbor cells, is applied in parallel and in discrete
time steps.

In the density classification problem, the challenge is to find a CA such that, given any
initial configuration x0 of 0’s and 1’s, it converges to the all 1’s fixed point configuration if the
fraction of 1’s in x0 is greater than ρc and it converges the the all 0’s fixed point configuration
otherwise. The number 0 < ρc < 1 denotes the critical density .

The problem was first formulated for dimension d = 1 (a ring) and critical density ρc = 1/2
[36]. The best-known two-state CA for tackling this instance gave a good solution which was
not perfect [20, 14]. In fact, an impossibility result which says that there is no perfect density
classifier with two states was later obtained [30].

The impossibility of finding perfect classifiers led many researchers to use different evo-
lutionary computation approaches to evolve good approximate solutions [26, 35, 13, 38, 41].
But in order to obtain perfect density classifiers, researchers were forced to modify the orig-
inal problem [9, 15, 40]. Another idea was to allow the existence of more than one local
rule [19, 34]. Fatès designed a two-state stochasticCA that solves the density classification
problem with arbitrary precision [18].

In [7] the authors used a continuous approach for solving deterministically the density
classification problem. More precisely, the idea was to use local averaging and saturation,
a process represented by a bistable heat equation. This bistable model, which exhibits two
stable critical points (0 and 1), is a particular case of a reaction-diffusion equation widely
used for studying phase transitions and front propagation [8, 28, 42]. Similar approaches
have been previously used [11, 16]. We refer to [12] for a comprehensive survey about the
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density classification problem.

The idea of the present work is to adapt this approach, which was created to the torus
topology, to other topologies corresponding to well-known graph classes: complete, regular,
star, Erdös-Rényi and Barabási-Albert graphs.

We denote the local dynamics adapted to these graph classes by Φ. Note that Φ cor-
responds to the discretization of the heat equation and it can in fact be applied to any
graph.

The idea is the following. Given a critical density ρc ∈ (0, 1), we build a discrete dynamics
Φ over an arbitrary connected graph G based on a discrete version of the following equation:

∂u

∂t
− ν∆u = γbρc(u), (1.1)

where u(x, t) is the state at time t ≥ 0 at point x in a domain Ω. The parameter ν > 0 is
a diffusion coefficient, γ > 0 is an amplification parameter and bρc is some suitable bistable
function. In this paper we choose the cubic polynomial:

bρc(u) = u(1 − u)(u− ρc).

As for the case of the torus, the resulting nonlinear heat equation exhibits two stable
critical points (0 and 1, attractors) and one unstable critical point (ρc, repulsor).

The main theoretical result of this thesis says that, for every connected graph G, there
are parameters for the large diffusion and small amplification dynamics Φ, such that Φ solves
perfectly the density classification problem in G.

With respect to experimental results, we show how the topology of a given graph G
influences the convergence time. First of all, the study of the dynamics without amplification
-which does not solve the density classification problem-indicates that the convergence time
depends on the edge density of G, and that the behavior is fundamentally different on trees (in
our simulations, the case of trees is provided by star graphs and a subclass of Barabási-Albert
graphs).

Then, we give experimental results when a small amplification is indeed present in Φ.
We observe a dramatic difference on the convergence time for the classes that are trees with
respect to those that are not (the classes that are not trees, in terms of convergence time,
are almost indistinguishably). Finally, we study the influence of the amplification factor on
the effectiveness and the convergence time of the local dynamics. Again, we see a dichotomy
between trees and graphs with cycles.

1.2 Maximal Independent Set

The Maximal Independent Set problem (MIS) is one of the main problems in distributed
computing. In its simplest version, it consists in finding an inclusion-maximal set of pairwise
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non-adjacent vertices on an undirected graph. The MIS corresponds to a specific case of
a wide problem in distributed graph algorithms, known as symmetry breaking. When a
distributed algorithm is executed, the nodes of a distributed system are assumed to be in the
same state, but in the successive time-steps the nodes are expected to play different roles,
hence breaking the symmetry.

The MIS has a trivial solution in the classical sequential setting, where a greedy algo-
rithm sequentially picks an arbitrary vertex, includes it in the maximal independent set, and
removes that vertex together with all its neighbors. In the 80’s, Karp and Wigderson [27]
mentioned that the MIS is an interesting problem in non-centralized computation. Soon after
that, Luby [33] and Alon, Babai, and Itai [3] presented simple distributed randomized algo-
rithms solving MIS in O(log n) time. Since then, this problem has been studied extensively
in the distributed setting. In the LOCAL model, the fastest deterministic MIS algorithms for
general graphs run in O(log5 n) [22], and O(∆+log∗ n) time [4]. Ghaffari [21] also obtained a
O(log ∆)+2O(

√
log logn) time randomized algorithm on general graphs, and a O(log a+

√
log n)

time randomized algorithm for graphs of arboricity a. With respect to lower bounds, Linial
[32] proved that computing an MIS on an n-cycle requires time Ω(log∗ n). Moreover, Kuhn,
Moscibroda and Wattenhofer [29] showed a Ω(

√
log n) lower-bound on the round complexity

on general graphs.

Another branch of research regarding the MIS problem in the distributed setting consists
in considering models with limited resources. One example is the beeping model [1], where
the nodes are limited to an extremely harsh system of communication. On each round, a
node can either broadcast a signal (a beep) or hear whether a neighbor emitted a beeping
signal, but noes it is not capable of distinguishing the number nor the sources of the beeping
signals it receives. In this model, Afek et al. [1] showed that an MIS can be computed in
time O(log3 n) when the nodes have to know the size of the graph n and have poly(log n)
sized memory. The stone-age model is another relevant model with limited resources, where
the memory of each node is limited to a constant not depending on the size of the graph.
In this model, Emek and Wattenhofer [17] give an MIS algorithm with a running time of
O(log2 n). Interestingly, this algorithm requires that the nodes start in a particular initial
state in order to be capable of performing correct computation.

An algorithm is called self-stabilizing [25] if it can reach a correct output starting from
any initial state. The motivation for this kind of algorithm is the capacity of distributed
systems to self-repair a faulty configuration when one of the parties crashes. For instance,
consider a maximal independent set, where one of the nodes crashes. It is possible that
the rest of the nodes do not form a maximal independent set in the remaining graph (for
instance, consider an MIS in a complete graph where the unique marked node crashes). In
that context, a self-stabilizing MIS algorithm should be able to reach an MIS for any initial
state configuration of the nodes.

In a keynote talk of SIROCCO 2022 [23], George Giakkoupis presented two extremely
simple randomized algorithms for MIS. His algorithms have two interesting properties: they
are self-stabilizing and they require only two or three states. Despite this simplicity, the
algorithm has hardly been studied before, and its convergence time is not been settled yet.
In this article, we propose a variant of the algorithm of [23] and study its convergence time
both numerically and analytically.
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Chapter 2

A Large Diffusion and Small
Amplification Dynamics for Density
Classification on Graphs

The density classification problem on graphs consists in finding a local dynamics such that,
given a graph and an initial configuration of 0’s and 1’s assigned to the nodes of the graph,
the dynamics converge to the fixed point configuration of all 1’s if the fraction of 1’s is greater
than a critical density (typically 1/2) and, otherwise, it converges to the all 0’s fixed point
configuration. To solve this problem we follow the idea proposed in [7], where the authors
designed a cellular automaton inspired by two mechanisms: diffusion and amplification. We
apply this approach to different well-known graph classes: complete, regular, star, Erdös-
Rényi and Barabási-Albert graphs.

2.1 Introduction

One of the simplest, regular graph topology is a torus. A cellular automaton (CA) is nothing
but a local dynamics applied to a torus (or to an infinite grid) [39, 37]. More precisely, a
CA consists of nd cells arranged uniformly spaced in the d-dimensional torus and following a
local rule identical in every cell. This local rule, which specifies how the state of each cell is
updated as a function of the states of its neighbor cells, is applied in parallel and in discrete
time steps.

In the density classification problem, the challenge is to find a CA such that, given any
initial configuration x0 of 0’s and 1’s, it converges to the all 1’s fixed point configuration if the
fraction of 1’s in x0 is greater than ρc and it converges the the all 0’s fixed point configuration
otherwise. The number 0 < ρc < 1 denotes the critical density .

The problem was first formulated for dimension d = 1 (a ring) and critical density ρc = 1/2
[36]. The best-known two-state CA for tackling this instance gave a good solution which was
not perfect [20, 14]. In fact, an impossibility result which says that there is no perfect density
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classifier with two states was later obtained [30].

The impossibility of finding perfect classifiers led many researchers to use different evo-
lutionary computation approaches to evolve good approximate solutions [26, 35, 13, 38, 41].
But in order to obtain perfect density classifiers, researchers were forced to modify the orig-
inal problem [9, 15, 40]. Another idea was to allow the existence of more than one local
rule [19, 34]. Fatès designed a two-state stochastic CA that solves the density classification
problem with arbitrary precision [18].

In [7] the authors used a continuous approach for solving deterministically the density
classification problem. More precisely, the idea was to use local averaging and saturation,
a process represented by a bistable heat equation. This bistable model, which exhibits two
stable critical points (0 and 1), is a particular case of a reaction-diffusion equation widely
used for studying phase transitions and front propagation [8, 28, 42]. Similar approaches
have been previously used [11, 16]. We refer to [12] for a comprehensive survey about the
density classification problem.

The idea of the present work is to adapt this approach, which was created to the torus
topology, to other topologies corresponding to well-known graph classes: complete, regular,
star, Erdös-Rényi and Barabási-Albert graphs.

We denote the local dynamics adapted to these graph classes by Φ. Note that Φ cor-
responds to the discretization of the heat equation and it can in fact be applied to any
graph.

The idea is the following. Given a critical density ρc ∈ (0, 1), we build a discrete dynamics
Φ over an arbitrary connected graph G based on a discrete version of the following equation:

∂u

∂t
− ν∆u = γbρc(u), (2.1)

where u(x, t) is the state at time t ≥ 0 at point x in a domain Ω. The parameter ν > 0 is
a diffusion coefficient, γ > 0 is an amplification parameter and bρc is some suitable bistable
function. In this paper we choose the cubic polynomial:

bρc(u) = u(1 − u)(u− ρc).

As for the case of the torus, the resulting nonlinear heat equation exhibits two stable
critical points (0 and 1, attractors) and one unstable critical point (ρc, repulsor).

The main theoretical result of this thesis says that, for every connected graph G, there
are parameters for the large diffusion and small amplification dynamics Φ, such that Φ solves
perfectly the density classification problem in G.

With respect to experimental results, we show how the topology of a given graph G
influences the convergence time. First of all, the study of the dynamics without amplification
-which does not solve the density classification problem-indicates that the convergence time
depends on the edge density of G, and that the behavior is fundamentally different on trees (in
our simulations, the case of trees is provided by star graphs and a subclass of Barabási-Albert
graphs).
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Then, we give experimental results when a small amplification is indeed present in Φ.
We observe a dramatic difference on the convergence time for the classes that are trees with
respect to those that are not (the classes that are not trees, in terms of convergence time,
are almost indistinguishably). Finally, we study the influence of the amplification factor on
the effectiveness and the convergence time of the local dynamics. Again, we see a dichotomy
between trees and graphs with cycles.

2.2 Preliminaries

In this section we give the main definitions of the concepts and problems used in the rest of
the paper.

We consider only finite simple undirected graphs G = (V,E), where V is the set of vertices
and E ⊆

(
V
2

)
is the set of (undirected) edges. For a node v in a graph G = (V,E), we call

N(v) = {u ∈ V : {u, v} ∈ E} the neighborhood of v. The cardinality of N(v) is called the
degree of v and it is denoted d(v). The maximum degree is denoted ∆(G) and corresponds
to maxv∈V d(v). Given a graph G with V (G) = {v1, . . . , vn}, the adjacency matrix A of G
corresponds to a square matrix of order n such that Aij = 1 when {vi, vj} ∈ E(G), and
Aij = 0 otherwise.

A sequence of vertices P = v1, . . . , vk is called a v1, vk- path if {vi, vi+1} is an edge of G,
for each 1 ≤ i < k. Two vertices u and v are connected if there exists a u, v-path in G. Being
connected defines an equivalence relation, and the equivalence classes of this relation (i.e.
inclusion maximal sets of connected vertices) are called connected components of G. In this
article, we consider only connected graphs. A cycle is a sequence of k ≥ 3 vertices v1, . . . , vk
that form a v1, vk-path and where {v1, vk} is an edge of G. A connected graph without cycles
is called a tree.

We denote by [n] the set {1, . . . , n}. Given a graph G = ([n], E), a configuration is a vector
u ∈ [0, 1]n. In this paper, we study time-discrete dynamical systems over the configurations
of graphs. Formally, we study the dynamics given by certain local updating rules, which are
functions F : [0, 1]n → [0, 1]n. Such a function F defines a sequence of configurations given
by:

ut = F (ut−1),

for each t ≥ 1, where u0 ∈ [0, 1]n is denoted the initial configuration.

Given a configuration u ∈ [0, 1]n, the density of u, denoted by ρ(u), is the quantiy

ρ(u) =
∑
i∈[n]

ui

n
.

In that context, given a critical density ρc ∈ (0, 1), the density classification problem consists
in the design of a time-discrete dynamical system F such that, for every Boolean initial
configuration u ∈ {0, 1}n:

• If ρ(u) < ρc then lim
t →∞

F t = [0, . . . , 0]

6



• If ρ(u) > ρc then lim
t →∞

F t = [1, . . . , 1]

In other words, a rule F solves the density classification problem if, for every Boolean
initial configuration, the dynamics converge to either an all 1’s or all 0’s configuration, de-
pending on whether the density of the initial configuration is below or above a given critical
density.

We also consider an approximated version of the density classification problem. Given
ε > 0, we say a rule F solves the ε-approximation of the density classification problem if

• If ρ(u) < ρc − ε then lim
t →∞

F t = [0, . . . , 0]

• If ρ(u) > ρc + ε then lim
t →∞

F t = [1, . . . , 1]

2.3 A Local Dynamics for Density Classification

In this section we define the large diffusion and small amplification dynamics. They are
defined by a local rule Φ is based on the discretization of a bistable nonlinear heat equation.
More precisely, given a critical density ρc ∈ (0, 1), the idea is to build a discrete dynamic
over an arbitrary connected graph G based on a discrete version of the following equation:

∂u

∂t
− ν∆u = γbρc(u), (2.2)

where u(x, t) is the state at time t ≥ 0 at point x in a domain Ω. The parameter ν > 0 is
a diffusion coefficient, γ > 0 is an amplification parameter and bρc is some suitable bistable
function. In this paper we choose the cubic polynomial:

bρc(u) = u(1 − u)(u− ρc)

The resulting nonlinear heat-equation is called the bistable heat equation, since it exhibits
two stable critical points (0 and 1, attractors) and one unstable critical point (ρc, repulsor).

Let G = (V,E) be a graph with vertex set V = {1, . . . , n} and edge set E ⊆
(
V
2

)
. We

denote by N(i) the set of neighbors of node i, and by di the degree (number of neighbors) of
i. We can discretize Eq. (2.2) with an explicit finite differences scheme on a uniform space
difference h > 0 and discrete time steps tk = k∆t for some ∆t > 0, obtaining

uk+1
i − uk

i

∆t
+

ν

h2

∑
j∈N(i)

Liju
k
j = γbρc(u

k
i ),

where L = L(G) is the Laplacian matrix of G, which corresponds to an n × n matrix is
defined by,

Lij :=


d(i) si i = j,

−1 si ij ∈ E,

0 si ij /∈ E.

7



If we denote by σ = ∆tγ, σ′ = ν∆t/h2 and bρc(ui) = ui(1−ui)(ui− ρc), we obtain the local
rule

uk+1
i = uk

i − σ′
∑

j∈N(i)

Liju
k
j + σbρc(u

k
i ).

Finally we choose the parameter ν in order to fix σ′ = 1/(∆+1), where ∆ = ∆(G) is the
maximum degree of G. Then, the large diffusion and small amplification dynamic over G
updating rule Φσ:

vt =

(
I − L

∆ + 1

)
ut, (2.3)

ut+1
i = fσ(vti), (2.4)

where fσ(x) = x + σbρc(x).

Theorem 2.1 For every connected graph G and for every ε > 0 there exists a σ > 0 such
that the large diffusion and small amplification dynamic over G solves the ε-approximation
of the density classification problem.

The proof of Theorem 2.1 is analogous to the proofs given in [7]. For sake of completeness
we include all the details. In order to proof Theorem 2.1, we prove first some technical
lemmas. In the first lemma, we show that the dynamic without amplification (i.e. when
σ = 0) converges to a configuration where the state of every vertex is the density of the
initial configuration.

In the following, we denote by C the matrix
(
I − L

∆+1

)
.

Lemma 2.2 For every u ∈ {0, 1}n, lim
t →∞

Φt
0(u) = ρ(u)[1, . . . , 1]T ,

Proof. When we consider the dynamics without any amplification σ = 0, we obtain that for
every t > 0, theupdating rule becomes:

ut = Φ0(u
t) = Cut−1 = Ctu0

Observe that C is a doubly stochastic (its entries are not non-negative and the sum of
their rows and columns is 1) and symmetric matrix. Moreover, C is primitive, meaning that
there exists an m > 0 such that (Cm)ij ̸= 0 for all i, j. The existence of such m simply
follows from the fact that the underlying graph is connected. Because of C is symmetric, we
know that all of its eigenvalues are real.

From the properties of C and the Perron-Frobenius Theorem we deduce the following
properties. First, λ = 1 is an eigenvalue of C of multiplicity one. Also, the eigenspace
associated with the eigenvalue λ = 1 is spanned by [1 · · · 1]T . The absolute value of all the
other eigenvalues is strictly less than 1. We obtain that C can be decomposed as MTDM ,
where D is diagonal, the elements on the main diagonal of D are the eigenvalues of C and
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M is orthonormal. Moreover,

lim
t→∞

Dt =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


implying that

lim
t→∞

Ct =
U

n
,

where U is the square matrix of order n where all its entries are ones. We deduce that for
every initial configuration u0 ∈ {0, 1}n,

lim
t→∞

ut+1 = lim
t→∞

Ctu0 =
1

n

(
n∑

i=1

u0
i

)
[1 · · · 1]T = ρ(u0)[1 · · · 1]T .

Implying that when σ = 0 we have that the dynamics converge to a configuration where the
state of every node corresponds to the density ρ(u0) of the initial configuration u0

Let us now study the case when σ > 0. When σ > 0 we have that fσ is strictly increasing,
fσ(0) = 0 and fσ(1) = 1. Therefore, by continuity fσ is a one-to-one map from [0, 1] to [0, 1].
In the next lemma, we show that when the initial configuration has each coordinate greater
than (resp. smaller than) the critical density ρc, then the dynamic correctly solves the density
classification problem.

Lemma 2.3 Let σ > 0. If u ∈ [0, 1]n is such that, for every i ∈ [n], ui > ρc then,

lim
t→∞

Φt
σ(u) = [1, . . . , 1]n

Similarly, if u ∈ [0, 1]n is such that, for every i ∈ [n], ui < ρc then,

lim
t→∞

Φt
σ(u) = [0, . . . , 0]n

Proof. Let us consider first a uniform initial configuration u0 = [q, . . . , q]T with q ∈ (ρc, 1].
Then v0 = Cu0 = [q, . . . , q]T = u0. Since fσ is increasing, we obtain that for every i ∈ [n],
u0
i < fσ(u0

i ) = Φσ(u)i ≤ 1. Inductively, for every t ≥ 1 and every i ∈ [n], Φt−1
σ (u)i < Φt

σ(u)i ≤
1. We deduce that limt→∞ Φt

σ(u) = [1, . . . , 1]T .

Now let us fix a configuration u ∈ [0, 1]n such that ρc < ui for all i ∈ [n], and let us call
q = mini ∈[n] ui ∈ (ρc, 1]. Then v = Cu satisfies that ρc < q ≤ vi for every i ∈ [n]. Therefore
ρc < q ≤ vi ≤ fσ(vi). This implies that Φ(u) is a configuration in [0, 1]n such that ρc < Φ(u)i
for all i ∈ [n], and such that q ≤ mini ∈[n] Φ(u)i.

Now define u∗ = [q, . . . , q]T with . From previous remarks, we have that limt→∞ Φt(u∗) =
[1 . . . 1]T and that for every t ≥ 0 and i ∈ [n], Φt(u∗)i ≤ Φt(u)i ≤ 1. We deduce that
limt→∞ Φt(u) = [1 . . . 1]T .

The case when ρc > ui for all i ∈ [n] is analogous.
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In next lemma we bound the difference between the dynamic with amplification respect
to the dynamic without amplification. Before giving the lemma, consider the following two
remarks. First observe that, if x ∈ [0, 1],

−ρc
4

≤ bρc(x) ≤ (1 − ρc)

4
.

Indeed, as x(1 − x) reaches its maximum at x = 1/2. Then, we have that

−ρc
4

≤ −ρcx(1 − x) ≤ bρc(x) ≤ (1 − ρc)x(1 − x) ≤ 1 − ρc
4

.

Second, notice that since all the coordinates of matrix C are positive, then Φ0 is monotone.
More precisely, for every pair of configurations w1, w2 ∈ [0, 1]n, such that for all i ∈ [n]
w1

i ≤ w2
i , we have that (Cw1)i ≤ (Cw2)i.

Lemma 2.4 Let u ∈ [0, 1]n be an initial configuration and σ > 0. Then for every t ≥ 0 and
i ∈ [n],

min
j ∈[n]

(Ctu)j −
σtρc

4
≤ Φt

σ(u)i ≤ max
j ∈[n]

(Ctu)j −
σt(1 − ρc)

4

Proof. Let u ∈ [0, 1]n and σ > 0. We now show by induction on t ≥ 1 that

(Ctu)i −
σtρc

4
≤ Φt

σ(u)

In the base case t = 1 we have that:

Φσ(u)i = (Cu)i + σbρc((Cu)i)

≥ Cui −
ρcσ

4

Now, for the inductive step, suppose that the property holds for t ≥ 1. Then,

Φt+1
σ (u)i = (CΦt

σ(u))i + σbρc((CΦt
σ(u)i)

≥ (CΦt
σ(u))i −

ρcσ

4

By the induction hypothesis, we know that Φt
σ(u) ≥ Ctu− ρctσ

4
[1, . . . , 1]T . Then, the second

remark above implies that:

Φt+1
σ (u)i ≥ (C(Ctu− ρctσ

4
[1, . . . , 1]T ))i −

ρcσ

4

≥ (Ct+1u− ρctσ

4
C[1, . . . , 1]T ))i −

ρcσ

4

≥ (Ct+1u)i −
ρctσ

4
− ρcσ

4

≥ (Ct+1u)i −
ρc(t + 1)σ

4

10



We deduce that

Φt
σ(u) ≥ (Ctu)i −

σtρc
4

≥ min
j∈[n]

(Cu)j −
σtρc

4

By analogous arguments we conclude that

Φt
σ(u)i ≤ max

j ∈[n]
(Ctu)j −

σt(1 − ρc)

4
.

We are now ready to give the proof of Theorem 2.1.

Proof. (of Theorem 2.1) Without loss of generality, let us assume that ρc ≥ 1/2.Since in
finite dimension all norms are equivalent, we have from Lemma 2.2 that when t → ∞:

max
u∈[0,1]n

∥∥∥∥(Ct − U

n

)
u

∥∥∥∥
∞

→ 0

this implies that there exists a t0 = t0(n, ε) such that for every t ≥ t0,

max
u∈[0,1]n

∥∥∥∥(Ct − U

n

)
u

∥∥∥∥
∞

≤ ε

3
.

Then, from Lemma 2.4 applied to t0 we have that for all i ∈ [n]

min
j ∈[n]

(Ct0u)j −
σt0ρc

4
≤ Φt0

σ (u)i ≤ max
j ∈[n]

(Ct0u)j −
σt0(1 − ρc)

4
.

Hence,

ρ(u) − ε

3
− σt0ρc

4
≤ Φt0

σ (u)i ≤ ρ(u) +
ε

3
− σt0(1 − ρc)

4
.

Thus, for every i ∈ [n], ∣∣ρ(u) − Φt0
σ (u)i

∣∣ ≤ ε

3
+

σt0ρc
4

.

Now let us pick σ =
4ε

3t0ρc
in order to obtain that

∣∣ρ(u) − Φt0
σ (u)i

∣∣ ≤ 2ε

3
.

If u is such that ρ(u) > ρc + ε, then Φt0(u)i > ρc for every i ∈ [n]. In other words, after
t0 iterations of the dynamic, all the coordinates of the reached configuration has all its
coordinates greater than ρc. From Lemma 2.3 we deduce that

lim
t→∞

Φt
σ(u) = [1, . . . , 1]T .

By analogous arguments, when ρ(u) < ρc − ε we deduce that

lim
t→∞

Φt
σ(u) = [0, . . . , 0]T .
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2.4 Experimental Results

In this section we report the results of an empirical study of the large diffusion and small
amplification dynamics. Our goal is to describe how the topology of a given graph G in-
fluences the convergence time and the effectiveness of the classification for fixed values of σ
(we are considering the situation where the critical density ρc = 1). We evaluate the dy-
namics on topologies having different densities (total number of edges), and different degree
distributions.

Our study is carried out considering the following graphs classes of connected graphs.

• Complete graphs Kn, which correspond to the n-node graphs with all possible edges.

• Regular graphs, which are the n-node graphs where each node has the same degree
d. In our experiments we consider d ∈ {4, 6, 8}.

• Star graphs Sn, consisting on the n-node graphs where one node has degree n−1 and
the other n− 1 nodes have degree 1.

• Erdös-Rény graphs [5], which is a model of random graphs, where each edge is
independently included in the graph with probability p. For our experiments, for an n-
node graph, we pick p = 2 ln(n)

n
, which roughly corresponds to the minimum probability

that ensures that the graph is connected with high probability [5].

• Barabási-Albert graphs[2], which is another model of random graphs, generated
sequentially according to a parameter m as follows. The network starts with m nodes
connected randomly. Then, n − m nodes are sequentially added to the graph. Each
time that a new node is added it is connected to m existing nodes with a probability
that is proportional to the degree that existing nodes already have. More formally, for
each i ∈ {m + 1, . . . , n}, let us call |E(Gi)| the total number of edges in the graph
induced by Gi = G[{1, . . . , i − 1}] and di(v) the degree of node v ∈ {1, . . . , i − 1} on
Gi. Then, when node i is included in the graph it is connected to m random neighbors,
where node v ∈ Gi is picked with probability di(v)

|E(Gi)| . Observe that Barabási-Albert
graphs with parameter m are trees.

The choice of the graph classes is based on the following criteria. First, complete graphs
are used as a benchmark of ideally connected topologies, for which the local dynamics behaves
in the most efficient way.

Second, the dynamics over regular graphs corresponds to the most natural generalization
of the dynamics given in [7], which is designed specifically for d-dimensional tori, which are
a particular case of 2d-regular graphs.

Third, star graphs correspond to the extreme opposite of regular graphs, where one node
has maximum degree, and all the others have minimum degree.

Finally, Erdös-Rényi and Barabási-Albert graphs are the best-known models of random
graphs, which are commonly used to represent real-world graphs such as social networks,
biological systems or particle systems.
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For our simulations we pick odd values of n, from 11 to 251 with a step of 30. For each
n, we pick the n-node complete graph Kn, the n-node star Sn, and, also, 50 independent
random samples of:

• d-Regular graphs for d ∈ {4, 6, 8} (50 samples for each d);

• Erdös-Rényi graphs with parameter p = (2 ln(n))
n

;

• Barabási-Albert graphs of parameter m ∈ {1, 2, 3, 4} (50 samples for each m).

If a sampled graph is not connected, it is discarded and not considered in the statistics.
For each n and for each graph, 10 · n random initial configurations are picked uniformly at
random.

2.4.1 Experimental study when σ = 0

We first study the convergence time of the dynamics without amplification (i.e. when σ =
0). The dynamics is iterated until the difference between each pair of coordinates of two
consecutive configurations is smaller than 10−3. Finally, we take the mean convergence time
over all configurations and all graphs sampled in the corresponding class.

Our empiric study of the dynamic without amplification indicates that the convergence
time is affected by the edge density of the input graph, and that it is fundamentally different
on trees. The results are reported in Figure 2.1.

Our results show that for complete graphs, Erdös-Rényi graphs and regular graphs, the
convergence time exhibits a logarithmic growth with respect to the size of the graph. Obvi-
ously, complete graphs have the lowest mean convergence time. In the case of regular graphs,
the convergence time exhibits a growth inversely proportional to the degree.

Interestingly, Erdös-Rényi graphs have the greatest mean convergence time of this group,
despite the fact that that each node has an expected degree 2 ln(n). Also, for these graphs,
the convergence time exhibits a greater standard deviation, implying that the curve is less
smooth than the other ones. Nevertheless, the mean convergence time of Erdös-Rényi graphs
still follows a logarithmic growth.

A second group is formed by the Barabási-Albert graphs with parameter m different
than 1. For this group, the convergence time exhibits a linear growth, and it is inversely
proportional to m.

Finally, a third group is formed by the star graphs and the Barabási-Albert graphs with
parameter m = 1. Observe that these two classes are subclasses of trees. These classes
exhibit a mean convergence time that is much larger than the others.
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Figure 2.1: Mean convergence time of the dynamics without amplification (σ = 0). Each line
represents the mean convergence time of the dynamic in the corresponding set of samples.
Lines labeled Kn and Sn represent the complete and star graphs. Lines labeled R4, R6,
R8 denote mean convergence time of samples of d-regular graphs for d equals 4, 6 and 8,
respectively. The line labeled E-R represent the convergence time of the samples of the Erdös-
Rényi graphs. Finally lines B − Am = k represent the convergence time of the samples of
the Barabási-Albert of parameters k ∈ {1, 2, 3, 4}.

2.4.2 Experimental study when σ = 0.01 and ρc = 1/2

In this subsection we report the experimental results when a small amplification is introduced.
For simplicity, our study is carried out for a critical density ρc = 1/2. We empirically tested
different values of σ in order to obtain a 100% of correct classification on every configuration
and graph we tested. A report over the effectiveness versus correctness can be found in next
subsection.

We fix σ = 0.01 and apply the same same simulation framework that we applied in
the previous section. However, in this case, the convergence time is approximated by the
time-step on which either every node has a state greater than 0.99 (i.e., when an all 1’s
configuration is approximately reached), or every node has a state smaller than 0.01 (i.e.,
when an all 0’s configuration is approximately reached). In the first case we assume that
the dynamics has classified the initial configuration with a density greater than 1/2, while in
the second case we assume that the dynamics has classified the initial configuration with a
density smaller than 1/2.

From our experimental results we deduce the following observations.

First, we obtain a dramatic difference on the convergence time for the classes that are not
trees, namely complete, regular, Erdös-Rényi and Barabási-Albert graphs with parameter m
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different than 1 For all these graph classes the convergence time is almost indistinguishably.
In fact, the differences are roughly the same that we observed in the convergence time of
the dynamics without amplification. For clarity, we show in Figure 2.2 only the convergence
times for graph sizes in the rank between 221 and 251.

Second, for the graph classes that are trees, namely the star graph and the Barabási-
Albert graphs with parameter m = 1, we observed that the convergence time diverges from
the one observed for the other graph classes. This difference is especially dramatic for the
Barabási-Albert graphs with parameter m = 1 (see Figure 2.3).

Figure 2.2: Mean convergence time of the dynamics with amplification σ = 0.01 for graph
sizes between 221 and 251. Each line represents the mean convergence time of the dynamics
in the corresponding set of samples. Line labeled Kn represents the complete graph. Lines
labeled R4, R6, R8 denote mean convergence time of samples of d-regular graphs for d equals
4, 6 and 8, respectively. The line labeled E-R represents the convergence time of the samples
of the Erdös-Rényi graphs. Finally lines B-A m = k represent the convergence time of the
samples of the Barabási-Albert with parameters k ∈ {2, 3, 4}.

2.4.3 Convergence time and effectiveness versus amplification

In this last subsection we study the influence of the amplification factor on the effectiveness
and the convergence time of the dynamics. For n = 11 and values of σ from 0.01 to 1,
we compute the number of iterations on which the dynamic reaches an (approximately) all
1’s configuration or an (approximately) all 0’s configuration, with the same criteria of last
section. The results are reported in Figures 2.4 and 2.5.

The results for complete, regular, Erdös-Renyi, and Barabási-Albert graphs with param-
eter m different than 1 are very similar. In all these classes the behavior is roughly the same.
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Figure 2.3: Mean convergence time of the dynamics with amplification σ = 0.01 for different
graph sizes. Each line represents the mean convergence time of the dynamics in the corre-
sponding set of samples. Lines labeled Kn and Sn represent the complete and the star graphs.
Lines B-A m = k represent the convergence time of the samples of the Barabási-Albert of
parameters k ∈ {1, 2}.

For that reason, in Figure 2.4 we choose the complete graph as a representative of this set
of graph classes. For σ > 0.1, the convergence time is roughly small (bounded by 200 time-
steps), while for σ < 0.1 the convergence time grows exponentially. For the complete, regular
and Barabási-Albert graphs with parameter m ∈ {3, 4}, the classification effectiveness was a
100% on every σ ≤ 1. On the contrary, for the Erdös-Renyi graphs and the Barabási-Albert
graphs with parameter m = 2, the classification effectiveness drops from 100% for σ > 0.35
(see Figure 2.5).

As we may expect from previous simulations, the behavior differs when we analyze the
star graphs or the Barabási-Albert graphs with parameter m = 1. As for the other classes, the
convergence time diverges when σ is smaller than 0.1. However, in the case of the star graph
we found that the effectiveness of classification drops from 100% when σ > 0.6. Around that
threshold (for σ > 0.56), the convergence time tends to augment, but it does not explodes
as for small values of σ. Interestingly, the effectiveness star graphs oscillates between an
88% and a 100% as σ approaches 1 Finally, with respect to Barabási-Albert graphs with
parameter m = 1, we observe a behavior that is similar to the star graphs, with two relevant
differences. First, the classification effectiveness drops from 100% when σ > 0.18, which is
smaller than the observed threshold for star graphs. Second, as σ approaches 1 the drop in
the effectiveness is monotonic.
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Figure 2.4: Mean convergence time for different values of σ for the 11 node complete graphs,
star graphs and Barabási-Albert graphs with parameter m = 1.

Figure 2.5: Mean percentage of effectiveness for different values of σ for the 11 node complete,
Erdös-Renyi, star and Barabási-Albert graphs with parameter m = 1.
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Chapter 3

Maximal Independent Set
Computation Driven by Finite-State
Dynamics

A Maximal Independent Set (MIS) is an inclusion maximal set of pairwise non-adjacent
vertices. The computation of an MIS is one of the core problems in distributed computing.
In this thesis, we introduce and analyze a finite-state distributed randomized algorithm for
computing a MIS on arbitrary undirected graphs. Our algorithm is self-stabilizing (reaches
a correct output on any initial configuration) and can be implemented on systems with very
scarce conditions. We analyze the convergence time of the proposed algorithm, showing that
in many cases the algorithm converges in logarithmic time with high probability.

3.1 Introduction

The Maximal Independent Set problem (MIS) is one of the main problems in distributed
computing. In its simplest version, it consists in finding an inclusion-maximal set of pairwise
non-adjacent vertices on an undirected graph. The MIS corresponds to a specific case of
a wide problem in distributed graph algorithms, known as symmetry breaking. When a
distributed algorithm is executed, the nodes of a distributed system are assumed to be in the
same state, but in the successive time-steps the nodes are expected to play different roles,
hence breaking the symmetry.

The MIS has a trivial solution in the classical sequential setting, where a greedy algo-
rithm sequentially picks an arbitrary vertex, includes it in the maximal independent set, and
removes that vertex together with all its neighbors. In the 80’s, Karp and Wigderson [27]
mentioned that the MIS is an interesting problem in non-centralized computation. Soon after
that, Luby [33] and Alon, Babai, and Itai [3] presented simple distributed randomized algo-
rithms solving MIS in O(log n) time. Since then, this problem has been studied extensively
in the distributed setting. In the LOCAL model, the fastest deterministic MIS algorithms for
general graphs run in O(log5 n) [22], and O(∆+log∗ n) time [4]. Ghaffari [21] also obtained a
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O(log ∆)+2O(
√
log logn) time randomized algorithm on general graphs, and a O(log a+

√
log n)

time randomized algorithm for graphs of arboricity a. With respect to lower bounds, Linial
[32] proved that computing an MIS on an n-cycle requires time Ω(log∗ n). Moreover, Kuhn,
Moscibroda and Wattenhofer [29] showed a Ω(

√
log n) lower-bound on the round complexity

on general graphs.

Another branch of research regarding the MIS problem in the distributed setting consists
in considering models with limited resources. One example is the beeping model [1], where
the nodes are limited to an extremely harsh system of communication. On each round, a
node can either broadcast a signal (a beep) or hear whether a neighbor emitted a beeping
signal, but noes it is not capable of distinguishing the number nor the sources of the beeping
signals it receives. In this model, Afek et al. [1] showed that an MIS can be computed in
time O(log3 n) when the nodes have to know the size of the graph n and have poly(log n)
sized memory. The stone-age model is another relevant model with limited resources, where
the memory of each node is limited to a constant not depending on the size of the graph.
In this model, Emek and Wattenhofer [17] give an MIS algorithm with a running time of
O(log2 n). Interestingly, this algorithm requires that the nodes start in a particular initial
state in order to be capable of performing correct computation.

An algorithm is called self-stabilizing [25] if it can reach a correct output starting from
any initial state. The motivation for this kind of algorithm is the capacity of distributed
systems to self-repair a faulty configuration when one of the parties crashes. For instance,
consider a maximal independent set, where one of the nodes crashes. It is possible that
the rest of the nodes do not form a maximal independent set in the remaining graph (for
instance, consider an MIS in a complete graph where the unique marked node crashes). In
that context, a self-stabilizing MIS algorithm should be able to reach an MIS for any initial
state configuration of the nodes.

In a keynote talk of SIROCCO 2022 [23], George Giakkoupis presented two extremely
simple randomized algorithms for MIS. His algorithms have two interesting properties: they
are self-stabilizing and they require only two or three states. Despite this simplicity, the
algorithm has hardly been studied before, and its convergence time is not been settled yet.
In this article, we propose a variant of the algorithm of [23] and study its convergence time
both numerically and analytically.

Notation. For a positive integer k, we denote by [k] the set {1, . . . , k}. Also, for a set S, we
denote by x ∈U S the process of taking an element of S uniformly at random. On inputs of
size n, we say that an event occurs with high probability if it occurs with probability greater
or equal than 1 − 1/n.

The dynamics. Let G = (V,E) be a simple finite undirected graph and k ≥ 2 an integer. A
configuration is a function that assigns to each node a state in [k]. Formally, a configuration
is given by a function x : V → {0} ∪ [k]. For each node u ∈ V we denote xu the state of u
on configuration x. The nodes in a state different than zero are called marked nodes, while
the nodes in state 0 are called unmarked.

We say that a configuration represents an independent set of G when no edge has both
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endpoints in a state different than 0. Formally,

∀{u, v} ∈ E, xu · xv = 0.

Additionally, we say that a configuration represents a maximal independent set of G when
it represents an independent set and, in addition, no edge has both endpoints in state 0.
Formally,

∀u ∈ V, xu ̸= 0 ∨ (∃v ∈ N(u), xu ̸= 0) .

Let us consider the following stochastic dynamic over graph configurations. Given a
configuration x, the next configuration x′ is computed synchronously according to a rule
that we denote MIS-Dynamics: Synchronously, the new state x′

u of u ∈ V is computed as
follows:

(i) If xu = 0 and ∀v ∈ N(u), xv = 0, then x′
u ∈U [k].

(ii) If xu ̸= 0 and ∃v ∈ N(u), xu = xv and ∀v ∈ N(u), xv ≤ xu, then x′
u ∈U [k].

(iii) If xu ̸= 0 and ∃v ∈ N(u), xv > xu, then x′
u = 0.

(iv) x′
u = xu otherwise.

In the special case of two-state configurations x : V → {0, 1}, we consider the following
stochastic dynamics, that we call 2-MIS-Dynamics: Synchronously, we compute for each u ∈ V
the new state x′

u as follows:

(i) If xu = 0 and ∀v ∈ N(u), xv = 0, then xu = 1.

(ii) If xu ̸= 0 and ∃v ∈ N(u), xv ̸= 0, then xu ∈U {0, 1}.

(iii) x′
u = xu otherwise.

Given a configuration x (also called initial configuration), the trajectory of x, denoted
{xt}t≥0, is the random variable representing the evolution of the MIS-Dynamics where xt is
obtained from xt−1 for each t > 1, and x0 = x.

We say that a configuration is a fixed point for the MIS-Dynamics if x′ = x with probability
1. Observe that a configuration x is a fixed point of the MIS-Dynamics if and only if x
represents a maximal independent set. Indeed, let x be a fixed point of the MIS-Dynamics.
We say that a node u is stabilized on x if one of the following conditions is satisfied:

1. xu ̸= 0 and every v ∈ N(u) satisfies xv = 0,

2. xu = 0 and there exists a stabilized neighbor of u such that xu ̸= 0.
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3.1.1 Our Contribution

We study the convergence time of the MIS-Dynamics and 2-MIS-Dynamics both empirically
and analytically.

We first simulate the dynamics on different graph classes, namely: Complete graphs, stars,
graphs of Erdös-Renyi, random trees, and graphs of bounded degeneracy. On the one hand,
we observe that the 2-MIS-Dynamics converges to a MIS in logarithmic time in expectation
for all classes. We also observe that the convergence time tends to increase with the density
of the input graph. In fact, for complete graphs, we the convergence time is Ω(log2(n)) with
non-negligible probability. On the other hand, we observe that the MIS-Dynamics converges
to an MIS in logarithmic time, both in expectation and with high probability. Moreover, the
computation time decreases as the number of states augments.

Then, we analytically study the convergence time of the MIS-Dynamics. First, we show
that with high probability, the dynamic converges in time O(α log n), where α is the size of
a maximum independent set of the input graph. Then, we extend our analysis to the 2-MIS-
Dynamics, showing that with high probability it converges in time O(α log2 n). Finally, we
show that restricted to the class of d-degenerate graphs, the 2−MIS− Dynamics converges
in time O(log n) with high probability.

3.1.2 Structure of the article

We begin giving some background and preliminaries in Section 3.2. In Section 3.3 we report
the results of our computational simulations. Then, in Section 3.4 we give bounds for the con-
vergence time of the MIS-Dynamics and 2-MIS-Dynamics on arbitrary graphs. In Section 3.5
we study the 2-MIS-Dynamics on graphs of bounded degeneracy. We finish with a discussion
in Section 4.2.

3.2 Preliminaries

In this article, all graphs are simple, finite, and undirected. Given a node v of a graph
G = (V,E), the neighborhood of v, denoted by N(v), is the set of vertices adjacent to v.
Formally N(v) = {u ∈ V : {u, v} ∈ E}. The degree of a node u, denoted d(u) is the
cardinality of N(v). Given a set of nodes U ⊆ V , the subgraph of G induced by U , denoted
G[U ], is the graph defined by the vertex set U , and all the edges in E with both endpoints in
U . A graph is called connected if there is a path between every pair of vertices. A connected
component of a graph G is an inclusion maximal connected set of vertices. A connected graph
without cycles is called a tree. A graph where every node has degree d is called d-regular.

A set of nodes S is called an independent set if the graph induced by it has no edges. An
inclusion-maximal independent set is simply called maximal independent set. The cardinality
of an independent set of maximal cardinality is denoted α(G), and is called the independence
number of G. The problem of computing α(G) is NP-Hard. The range of its value goes from

21



1 for the complete graph, to n − 1 for the case of the star graph. There are a number of
combinatorial lower bounds for α(G) with respect to some graph parameters. In this article,
we make use of the following simple result.

Proposition 3.1 ([10]) Let G be an n-node graph of maximum degree ∆. Then, α ≥ n/∆.

A graph property is called an hereditary property if it is closed under taking induced
subgraphs. An example of a hereditary property is bounded degeneracy. A graph G is called
d-degenerate if every subgraph of G (including G itself) contains a vertex of degree at most
d. Alternatively, a graph has degeneracy d if it can be decomposed successively removing
vertices of degree at most d. In the following lemma, we now show that in a d-degenerate
graph, for most vertices their degree is bounded by 4d− 2.

Lemma 3.2 A connected graph of degeneracy d contains at least n/2 nodes of degree at most
4d− 2.

Proof. First, observe that a graph of degeneracy d has at most dn edges. Let us call U the
set of nodes of a degree greater or equal than 4d− 1. Then, for the hand-shaking lemma:

2dn =
∑
v∈V

d(v) ≥ |U |(4d− 1) + (n− |U |).

The previous bound implies that |U | ≤ (2d−1)n
4d−2

≤ n/2. We deduce that the cardinality of the
set vertices of degree at most 4d− 2 is at least n/2.

The graphs of Erdös-Rényi-Gilbert (in the following graphs of Erdös-Rényi for simplicity)
are a randomized model of graphs where a graph is constructed by connecting labeled nodes,
where each edge is included in the graph with probability p, independently from every other
edge. The following result states that with high probability the independence number of a
graph of Erdös-Rényi is bounded by the logarithm of the number of nodes.

Proposition 3.3 [6] For each p ∈ (0, 1) and sufficiently large n, the independence number
of a graph of Erdös-Rényi with parameters n and p is O(log n) with high probability.

3.3 Experimental Results

In this section, we report the empirical analysis of the 2-MIS-Dynamics and the MIS-Dynamics.

In Figure 3.1 we show the results of a study of the 2-MIS-Dynamics and the MIS-Dynamics
of k states with k ∈ {2, 3, 4, 9} over complete graphs. We observe that on all cases the
average convergence time has a logarithmic grow with respect to the size of the graph. We
also observe that the average convergence time of the MIS-Dynamics decreases as the number
of states k grows. The 2-MIS-Dynamics has a better convergence time than the three-state
MIS-Dynamics for small values of n, but for complete graphs on more than 16 nodes the

22



Figure 3.1: Plot of the average convergence time for the 2-MIS-Dynamics and MIS-Dynamics.
On the x-axis we have the number of nodes in log2 scale, while in the y-axis are given the
number of iterations. The different dynamics are represented with different colors. The line
labeled k = 1 corresponds to the 2-MIS-Dynamics while the other lines represent the MIS-
Dynamics with k ∈ {2, 3, 4, 9} states. Each line represents the average convergence time of
5000 initial configurations picked uniformly at random. We also give the slope ℓ of the least
squares regression line corresponding to the points.

2-MIS-Dynamics has a larger average convergence time than all the MIS-Dynamics for every
k ≥ 2.

We then extend the analysis to other graph classes. In Figure 3.2 we report our results
for complete, star, random trees (Barabasi-Albert graphs with m = 1) and 4-regular graphs.
In all cases, the results are roughly the same than those we obtained for the complete graphs.
That is to say, the average convergence time O(log n) and it decreases as we increase the
number of states in the dynamics. We complement our analysis with a study of the worst-
case convergence time (i.e. the maximum convergence time over all initial configurations). In
Figure 3.3 we report our results, which were obtained in the same way as Figure 3.2, except
that we take the maximum over all observed convergence times for each graph size.

Interestingly, in the worst-case analysis on complete graphs, we observe that the con-
vergence time of the 2-MIS-Dynamics behaves significantly different than on the rest of the
classes, and also with respect to the average case. In fact, our results suggest that in the
worst case the convergence time of the 2-MIS-Dynamics is O(log2 n). This fact is indeed
verified in the next section.

Finally, we explore how the density of the input graph influences the average and worst-
case convergence-time of the 2-MIS-Dynamics and MIS-Dynamics. To do so, we fixed a number
of nodes to n = 500, and simulate the dynamics in two families of graphs. First, on Erdös-
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Figure 3.2: Plots of the average convergence time for the 2-MIS-Dynamics and MIS-Dynamics
for different graph classes. On the x-axis we have the number of nodes, while on the y-axis
are given the number of iterations. In the left column, we have the linear scale, while in
the right column we give the x-axis in log2 scale. The different dynamics are represented in
different colors. The line labeled k = 1 corresponds to the 2-MIS-Dynamics while the other
lines represent the MIS-Dynamics with k ∈ {2, 3, 4, 9} states. Each line represents the average
convergence time of 1000 initial configurations picked uniformly at random. We also give the
slope ℓ of the least squares regression line corresponding to the points.
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Figure 3.3: Plots of the worst-case convergence time for the 2-MIS-Dynamics and MIS-
Dynamics for different graph classes. On the x-axis we have the number of nodes, while
on the y-axis are given the number of iterations. In the left column, we have the linear scale,
while in the right column we give the x-axis in log2 scale. The different dynamics are repre-
sented in different colors. The line labeled k = 1 corresponds to the 2-MIS-Dynamics while
the other lines represent the MIS-Dynamics with k ∈ {2, 3, 4, 9} states. Each line represents
the average convergence time of 1000 initial configurations picked uniformly at random. We
also give the slope ℓ of the least squares regression line corresponding to the points.
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Rényi graphs for different probabilities p. Second, in d-degenerate graphs for different values
of d. Our results are reported in Figure 3.4. We observe that for the 2-MIS-Dynamics and the
MIS-Dynamics, the maximum average convergence times are found on graphs with a mean
degree around n/2. With respect to the worst-case convergence-time, we observe a similar
behavior for the MIS-Dynamics, while for the 2-MIS-Dynamics tends to increase with the
density.

Graphs of Erdös-Rényi d-degenerate graphs

Figure 3.4: Plots of the influence of the edge density on convergence time for the 2-MIS-
Dynamics and MIS-Dynamics. On the four plots we represent the convergence time of the
2-MIS-Dynamics(k=1) and the MIS-Dynamics on k ∈ {2, 3, 4, 9} states on graphs with n = 500
nodes. In the left column we represent the behavior of the convergence-times on Erdös-Renyi
graphs, where the x-axis represents the probability p of adding the edge between two vertices.
In the right column we represent the behavior of the convergence-times on d-degenerate
graphs. In that case, the x-axis represents the different values of the degeneracy d. In the
top row the y-axis represent the average convergence times of the corresponding dynamics,
while the bottom row we show the worst-case convergence times. Each point is computed
taking 10000 random initial conditions, each one on a different graph picked uniformly at
random.

3.4 A bound on the convergence time of the MIS-Dynamics

on arbitrary graphs

In this section, we show that for every initial configuration, the MIS-Dynamics converges to a
fixed point (hence a configuration that represents a maximal independent set) in O(α · log n)
time-steps on average. For simplicity, our analysis focuses on the case where k = 2, as it can
be trivially generalized to the case where k > 2.
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For a configuration x, we define the following energy functional :

S(x) =
∑

{u,v}∈E

δ(xu, xv), where δ(a, b) =

{
1 if a = b ̸= 0,
0 otherwise.

Let us fix an initial configuration x0 and a time-step t. We denote by St the random
variable that equals S(xt). A configuration xt such that St = 0 is called a zero-energy con-
figuration. Observe that all configurations that represent an independent set are zero-energy
configurations (but the converse is not true). We call Et

m the random variable representing
the set of edges of G having on time-step t with both endpoints marked with the same value.
Formally,

Et
m = {{u, v} ∈ E : xt

u = xt
v ̸= 0}

Observe that St = |Et
m|. We also denote by At and Bt the random variables representing

the following sets of edges:

At = {u ∈ V : xt−1
u = 0 and xt

u ̸= 0}

Bt = {u ∈ V : xt−1
u ̸= 0 and xt

u ̸= 0}

We say that a time-step t such that At ̸= ∅ is a marking time step.

Lemma 3.4 Let {xt}t≥0 be a trajectory and let t0 be a marking time-step. Let C be a
connected component of the graph induced by At0. Then C contains a node that is never
unmarked. Formally, there is u ∈ C satisfying xt

u ̸= 0 for every t ≥ t0.

Proof. Let us suppose by contradiction that there is a time step t1 > t0 where every node in
C has visited state 0 at least once on some configuration of {xt0 , . . . , xt1}. From all possible
choices of t1, we pick the minimum one. Let v be a node such that xt

v ̸= 0 for every t0 ≤ t < t1
and xt1

v = 0. Then, the only possibility is that xt1−1
v = 1 and that v has a neighbor u ∈ N(v)

such that xt1−1
u = 2. Observe that xt1

u ̸= 0 (it impossible that a node in state 2 switches to 0
in the next time-step). Then, by definition of T , there must exist a time-step t0 < t < t1 − 1
such that xt

u = 0. However, we are assuming that v is in a state different than 0 on all the
configurations of that interval. Therefore, it is impossible that u switches to a state different
than 0 on a time-step between t and t1−1. This contradicts the choice of u. We deduce that
at least one node of C is never unmarked.

Lemma 3.5 The trajectory of every configuration has at most α marking time steps.

Proof. Now let us call T the set of time-steps t such that At ̸= ∅. Given a time-step t ∈ T ,
we know by Lemma 3.4 that there is a node v(t) ∈ V that is never unmarked after time-step
t. We have that the set {v(t)}t∈T forms an independent set of G. Indeed, let us pick two
different time-steps t1, t2 ∈ T such that t1 < t2. By definition of At2 we have that xt2−1

v(t2)
= 0

and xt2
v(t2)

̸= 0. Since t1 < t2 we have that xt2−1
v(t1)

̸= 0. We deduce that v(t1) and v(t2) cannot

be adjacent. We conclude that |T | ≤ α(G).
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Lemma 3.6 Let t > 0 be a non-marking time-step. Then, E(St) ≤ St−1/2.

Proof. First, we observe that, since At = ∅, every edge that contributes to St also contributes
to St−1. Formally, Et

m ⊆ Et−1
m . Indeed, let e = {u, v} be an edge contained in Et

m. Clearly
u and v belong to Bt, as At is empty. Then, xt−1

u ̸= 0 and xt−1
v ̸= 0. Moreover, xt−1

u = xt−1
v ,

as otherwise at least one of the endpoints would be 0 on time-step t. Therefore e is also
contained in Et−1

m . Now observe that for every e ∈ Et−1
m , the probability that e ∈ Et

m is fewer
or equal than the probability that both endpoints of e remain marked and choose the same
state, which is 1/2. We deduce that E(St) ≤ St−1/2.

Lemma 3.7 Let t be a zero energy time-step. Then at least one of the following holds:

• t + 1 is marking,

• t + 2 is marking,

• xt+1 is a fixed point.

Proof. Let t be a time-step satisfying that St = 0, and let us assume that At+1 = ∅. We show
first that xt+1 must represent an independent set. Observe that At+1 = ∅ implies St+1 = 0.
Then, in xt or xt+1 no edge has both endpoints in state different than 0. Suppose that there
exist an edge {u, v} such that xt+1

u = 1 and xt+2
v = 2. Then necessarily xt

u = xt
v = 0, which

contradicts the assumption of At+1 = ∅. We deduce xt+1 represents an independent set. Now
suppose that xt+1 does not represent a maximal independent set, that is to say, there is a
node w such that xt+1

v = 0 for all v ∈ N(w)∪ {w}. Then necessarily xt+2
w = 1, implying that

At+2 ̸= ∅.

Now we are ready to prove the main result of this section.

Theorem 3.8 For every initial configuration, the MIS-Dynamics converges to a configuration
representing a maximal independent set in O(α · log n) time-steps with high probability.

Proof. Let x0 be an arbitrary initial configuration. From Lemma 3.6 we know that, with high
probability, in at most O(log n) time-steps the trajectory visits a zero-energy configuration
or a marking time-step. Let t > 0 be a marking time-step or a time-step where the trajectory
visits a zero-energy configuration. Combined with Lemma 3.7 and 3.4 we know that either
xt+1 is a fixed point (so we are done), or either t, t+1 or t+2 is marking. In the later cases, we
repeat the analysis by taking xt, xt+1 or xt+2 as the initial configuration. By Lemma 3.5 we
know that the number of repetitions is bounded by α. We deduce that with high probability
the dynamic converges to a configuration representing a maximal independent set in O(α ·
log n) time-steps.

3.4.1 The 2-MIS-Dynamics on arbitrary graphs

We now adapt our result to the 2-MIS-Dynamics. The difference is found in the result given
on Lemma 3.4. In fact, that lemma does not hold for the 2-MIS-Dynamics. Indeed, on
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every marking time-step t, there exists a non-zero probability that all nodes of At become
unmarked. Nevertheless, the next lemma shows that at least one marked node is stabilized
with a constant probability.

Lemma 3.9 Let {xt}t≥0 be a trajectory and let t0 be a marking time-step. Let C be a
connected component of the graph induced by At0. Let E the event where at least one node of
C is never unmarked. Formally,

E : ∃u ∈ C, ∀t ≥ 0, xt
u ̸= 0.

Then, there exists an absolute constant c ∈ (0, 1) satisfying that Pr(E) ≥ c.

Proof. Let m be the number of edges in G[C]. If m = 0 then C consists on an isolated marked
node, which is stabilized with probability 1. If 0 < m ≤ 144 we have that Pr(E) ≥ 2−144.
Indeed, when m ≤ 144 we have that C contains at most 144 nodes. A lower-bound on Pr(E)
is the event where on one time-step all except one fixed node of C becomes 0. The probability
of such an event is lower-bounded by 2−144. In the following, we assume that m > 144.

Let us denote e1, . . . , em the edges of G[C]. For each i ∈ [m] we denote by eti the random
variable that equals 1 if edge ei is marked on all time-steps in {t0, . . . , t0 + t}. We also
denote mt =

∑
i∈[m] e

t
i. In words, mt is the random variable representing the edges that have

both endpoints marked on all time-steps in {t0, . . . , t0 + t}. Observe that for each i, j ∈ [m],
E(eti) = 2−2t and by linearity of the expectation, E(mt) = 2−2tm.

We aim to bound the probability that the actual value of mt has a large gap with respect
to its expectation. By Chebyshev’s inequality we have that

Pr(|mt − E(mt)| > a) ≤ Var(mt)

a2
.

By Bienyamé’s identity, we know that

Var(mt) =
∑
i∈[m]

Var(eti) +
∑
i∈[m]

∑
j∈[m]\{i}

Cov(eti, e
t
j)

where
Var(eti) = E((eti)

2) − (E(eti))
2 = 2−2t − 2−4t.

and

Cov(eti, e
t
j) = E(etie

t
j) − E(eti)E(eti) =

{
2−3t − 2−4t if ei ∩ ej ̸= ∅

0 otherwise.

Then, if we denote by ∆ the maximum degree of G[C],

Var(mt) ≤ m · (2−2t − 2−4t) + m · 2∆ · (2−3t − 2−4t).

Observe that ∆2 ≤ |C|∆ ≤ 2m. Therefore,

Var(mt) ≤ m · (2−2t − 2−4t) + 23/2m3/2 · (2−3t − 2−4t).

Now let us pick k ≤ m a variable to be fixed later. If we choose

τ =

⌊
log(m) − log(k)

2

⌋
,
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we have that E(mτ ) ∈ [k, 2k] and

Var(mτ ) ≤ m ·

(
k

m
−
(
k

m

)2
)

+ 23/2m3/2 ·

((
k

m

)3/2

−
(
k

m

)2
)

= k + k
√

8k −

(
k2

m
−

√
8k2

√
m

)
≤ k + k

√
8k

Then,

Pr(|mτ − E(mτ )| > k/2) ≤ 4

k
+

4
√

8√
k
.

If we pick k = 144 we obtain that Pr(|mτ − E(mτ )| > 72) < 0.98. In other words, with
probability greater than 0.02 we have that mτ ∈ [E(mτ ) − 72,E(mτ ) + 72] ⊆ [72, 360].
Conditioned to that event, we have that with probability greater or equal than 2−360 a fixed
node u is stabilized on time-step τ + 1.

We conclude that Pr(E) ≥ c = 0.02 · 2−360.

Using the previous lemma, we can show that, with high probability, there are O(α · log n)
marking time-steps on a 2-MIS-Dynamics.

Lemma 3.10 For every initial configuration, with high probability, there are O(α · log n)
marking time-steps on the 2-MIS-Dynamics.

Proof. From Lemma 3.9, we know that there exists a constant c such that at least one marked
node is stabilized with a probability greater than c. Then, on O(log n) marking time-steps
at least one node is stabilized with high probability. We deduce that the trajectory of every
initial configuration visits O(α · log n) marking time-steps with high probability.

Observe that we can show results analogous to Lemmas 3.6 and 3.7 using exactly the
same proofs. We deduce the main result of this subsection.

Theorem 3.11 For every initial configuration, the 2-MIS-Dynamics converges to a configura-
tion representing a maximal independent set in O(α · log2 n) time-steps with high probability.

3.5 The 2-MIS-Dynamics on graphs of bounded degener-

acy

In this section, we show that the 2-MIS-Dynamics converges to a configuration that represents
a maximal independent set in time O(log n) on average.

Let G be an arbitrary graph. We denote by G≤d the sub-graph of G induced by the nodes
of degree at most d and by αd the size of a maximum independent set of G≤d.
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Lemma 3.12 Let G be a graph, let d be a positive integer, and let x be a configuration
of G with no stabilized vertices. Then, on average, Ω( αd

4d+1 ) nodes are stabilized after two
time-steps.

Proof. For each u ∈ V and t > 0, let us call P (u, t) the probability that u is stabilized on
time-step t. We claim that P (u, 2) ≥ 2−(2du+1). Indeed, if xu = 1 then P (u, 1) ≥ 2−(du+1),
hence P (u, 2) ≥ 2−(2du+1). If xu = 0 then, on time step t = 1 the probability that u and all
its neighbors are unmarked is at least 2−du . Hence P (u, 2) ≥ 2−(2du+1).

Now let U be a maximum independent set of G≤d, and let W be the random variable
representing the subset of U that is stabilized on time-step t = 2. Then, for each u ∈ U ,
Pr(u ∈ W ) ≥ 2−(2d+1). Hence

E(|W |) ≥ |U |
22d+1

≥ αd

4d+1
.

Theorem 3.13 For every initial configuration over a d-degenerate graph, the 2-MIS-Dynamics
converges to a configuration representing a maximal independent set in O(log n) time-steps
with high probability.

Proof. Let G be an arbitrary n-node graph of degeneracy d, and let x be an arbitrary
configuration of G. Without loss of generality, we assume that G has no stabilized vertices.
Otherwise, we pick the set of nodes U that are not stable on x, and continue the reasoning
with the subgraph of G induced by U . Observe that G[U ] is a d-degenerate graph as the
property is hereditary.

Let W be the set of nodes in G of degree at most 4d− 2. From Lemma 3.2 we know that
|W | ≥ n/2. Now let us call αW the size of a maximum independent set of the graph induced
by W . From Proposition 3.1 we have that

αW ≥ |W |
4d− 2

≥ n

2(4d− 2)
.

Then, from Lemma 3.12 we know that after two time-steps, the expected number of
stabilized nodes is:

αW

44d−1
≥ n

2(4d− 2)44d−1
.

Let us denote c(d) = 2(4d− 2)44d−1. The previous bound implies that after

T ≥ 2

log(c(d)) − log(c(d) − 1)
· log(n)

time-steps, the expected number of non-stabilized nodes is at most 1/n. By the Markov
inequality, we deduce that on time-step T the probability that all nodes are stabilized is at
least 1 − 1/n. We conclude that, with high probability, on O(log n) time-steps all nodes are
stabilized.
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Chapter 4

Conclusions and Future Work

4.1 Density Classification

In its original formulation, the density classification problem is stated for one-dimensional
cellular automata. Since this problem has no solution, various efforts have been carried out
in order to try to solve it perfectly in other formulations. In [7] the problem was stated in
terms of the binary heat equation, with continuous states between 0 and 1, and shown that
it could be solved on any d-dimensional regular grid with a sufficiently small value of the
parameter σ, denoted amplification factor. In this thesis, we have proposed a generalization
of this formulation to arbitrary graphs.

From the theoretical point of view, we have shown that any connected graph admits a
solution for a sufficiently small amplification parameter. Later, we reported an experimental
study of the dynamics. Our goal was to describe how the topology of a given graph G
influences the convergence time and the effectiveness of the classification for fixed values
of σ. Roughly, our results indicate that there is a noticeable difference between dense and
sparse topologies with respect to the size of the amplification factor. In particular, connected
acyclic graphs (trees) such as star graphs and Barabási-Albert graphs with parameter 1,
require a smaller amplification factor compared to more dense topologies, such as Erdös-
Renyi or regular graphs, in order to obtain comparable classification effectiveness. Since the
convergence time of the dynamics is indirectly proportional to the size of σ, our results suggest
that, from the computational complexity point of view, the density classification problem may
be harder on sparse topologies than on dense topologies. The theoretical verification of this
claim is a matter of future research.

4.2 Maximal Independent Set

We have presented a very simple dynamics that converges to configurations that represent
a maximal independent set of the input graph on any initial configuration with probability
1. Our experimental results suggest that in average the convergence time of our dynamics is
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O(log n). Moreover, the dynamics on three or more states converges in O(log n) steps with
high probability, while in the case of two states, the convergence time is O(log2 n) with high
probability.

The results given in Theorems 3.8 and 3.11 confirm the observations on graphs with
constant independence number (such as complete graphs). Theorem 3.13 also confirms the
observations of the 2-MIS-Dynamics on graphs of bounded degeneracy. Finally, Proposition
3.3 together with Theorems 3.8 and 3.11 implies poly-logarithmic convergence time for graphs
of Erdös-Rényi in average, as well as with high probability.

We remark that the convergence time of our dynamics is not settled for general graphs.
The existence of graph classes with large convergence time (on average or with high prob-
ability) is a possibility that we do not completely explore in this article. In this sense, we
conjecture that our results can be improved in order to show a poly-logarithmic convergence
time for every graph class.

From a more general perspective, we believe that there is an interesting research line
related to the definition of simple finite-state dynamics that can work as strategies to effi-
ciently compute to other graph structures, different that maximal independent sets, such as
maximal matchings, minimal dominating sets, etc.
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