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Abstract

We are interested in the relation between the average/minimum degree
and the appearance of substructures in infinite graphs.

In finite graphs, the impact of the average degree on the appearance of
certain substructures is well studied. The specific substructure that will play
the lead role here is the complete graph Kk, for k ∈ N, which may appear as
a subgraph, as a minor, or as a topological minor. So a good example of a
result in the direction we aim at is Turán’s classical theorem, which states that
an average degree of more than k−2

k−1n, where n is the number of vertices of the
host graph G, ensures the existence of a finite subgraph of G that is isomorphic
to Kk.

While the function from Turán’s theorem depends on n, for forcing ‘weaker’
substructures the degree bound may depend only on k: An average degree of
at least c1k

2 ensures a topological minor isomorphic to Kk, and an average
degree of at least c2k

√
log k ensures a minor isomorphic to Kk. (The ci are

some constants from R+.)
Further, related substructures such as the complete k-partite graph Kk

s

with partition classes of size s, or k-connected subgraphs, can be forced with
stronger/weaker assumptions. In the following table, where we assume G to be
a graph on n vertices, the reader finds an overview of some well-known results
we would like to extend to infinite graphs. For the sake of brevity, in the first
of these results, the quantifiers are missing: for every ε, k and s there is an n0

so that for all n ≥ n0 the implication below is valid.

Erdős-Stone Turán Bollobás &
Thomason

Kostochka Mader

d(G) > (k−2
k−1 + ε)n > k−2

k−1n ≥ c1k2 ≥ c2k
√

log k ≥ 4k

H ⊆ G,
⇒ Kk

s ⊆ G Kk ⊆ G Kk �top G Kk � G H (k+ 1)-
connected.

So how do these results extend to infinite graphs? To answer this question,
we must ask first of all how the average degree translates to an infinite graph, as
we now deal with an infinite number of vertices. Of course, the average degree
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is closely related to the density |E(G)|/
(|V (G)|

2

)
, and this notion is reflected in

the upper density of an infinite graph.
The upper density ud(G) of a graph G is defined as the supremum of the

subgraph densities, taken over all sequences of finite subgraphs of G whose order
tends to infinity. That is, ud(G) := sup(Hi)i∈N

lim supi→∞(|E(Hi)|/
(
V (Hi)

2

)
),

where the sequences (Hi)i∈N range over all sequences of finite subgraphs Hi ⊆ G
with limi→∞ |V (Hi)| =∞ (see for instance Bollobás [1]).

Now, it is not difficult to calculate that if (for k > 1) the upper density of
a graph G is greater than k−2

k−1 , say ud(G) ≥ (1 + δ)k−2
k−1 , then G has a finite

subgraph H of average degree at least (1 + δ
2 )k−2
k−1 |V (H)|, and thus, by Turán’s

theorem, contains a Kk-subgraph. Actually, as the order of the subgraph H
may be assumed to exceed any given integer, we may apply to H the Erdős-
Stone theorem for any s, and obtain a Kk

s -subgraph. So in this sense, both the
Turán and the Erdős-Stone theorem do extend to infinite graphs.

From the existence of arbitrarily large complete k-partite subgraphs once
the threshold upper density k−2

k−1 is surpassed, it follows that the upper den-
sity of any infinite graph takes one of the following (countably many) values:
1, 0, 1

2 ,
2
3 ,

3
4 , . . ., that is, one of the Turán densities. So it seems that the graphs

for which it would be interesting to extend the latter three results discussed
above, all have upper density 0. In other words, the upper density is not fine
enough a measure for a generalisation of e.g. Kostochka’s theorem to infinite
graphs.

One possible way out of this dilemma is replacing the average degree with
something that quite obviously does exist in infinite graphs, the minimum de-
gree. For rayless graphs, this is an excellent option, as we have the following
result, which is not difficult to prove. Write δV (G) for the minimum degree
taken over all vertices of the graph G.

Proposition 1. [4] Let k ∈ N and let G be a rayless graph with δV (G) ≥ k.
Then G has a finite subgraph of average degree at least k.

This means that the latter three results from the table above extend literally
to rayless graphs, if we replace the average degree with the minimum degree.

In general, however, we are not that lucky. Just consider an infinite tree,
whose vertices may attain any minimal degree condition, while the tree does
not contain any interesting substructure. The example suggests that we need
some additional condition that prevents ‘the density from escaping to infinity’,
in other words, that makes the vertices send their edges ‘back’ instead of ‘further
out’. Following recent developments (see [3]), the most natural way to impose
such an additional condition is to impose it on the ends1 of the graph.

In [2, 5], see also [3], the vertex-degree2 dv(ω) of an end ω is defined as the
supremum of the cardinalities of the sets of vertex-disjoint rays from ω. This
intuitive notion allows us to extend Mader’s theorem from above to infinite

1The ends of a graph are the equivalence classes of the rays (the one-way infinite paths) of
the graph under the following equivalence relation. Two rays are equivalent if no finite set of
vertices separates them. For more on the end space of an infinite graph, see [3].

2There, also the edge-degree of ω is defined quite analogously, as the supremum of the
cardinalities of the sets of edge-disjoint rays from ω. The edge-degree allows for an extension
of the edge-version of Mader’s theorem. In this edge-version, only linear bounds on the
minimum (edge)-degree are needed. For details, see [5].
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graphs. For this, let us write δV,Ωv (G) for the minimum of the degrees or
vertex-degrees, taken over all vertices and ends of the graph G.

Theorem 2. [5] Let G be a graph. If δV,Ωv (G) ≥ 2k(k + 3) then G has a
(k + 1)-connected subgraph.

We remark that the (k + 1)-connected subgraph can neither be guaranteed
to be finite nor to be infinite. The bound 2k(k + 3) may possibly be lowered,
but not to less than k

5 log k
5 . See [5].

The vertex-degree, however, does not serve for forcing large complete (topo-
logical) minors. One can see this by considering the following example. Take,
for r ∈ N, r > 2, the infinite r-regular tree, and add a spanning cycle in each
level. The resulting graph Gr has one end of infinite vertex-degree, while all
vertices have degree at least r. Now, although r may be arbitrarily large, Gr is
planar, and thus has no complete minor of order greater than 4.

So, a different road has to be taken for forcing minors and topological minors
in graphs with rays. In [4], the relative degree of an end was introduced for
locally finite graphs. The idea is to calculate the ratios of the cardinality of
the edge-boundary3 ∂eHi versus the cardinality of the vertex-boundary4 ∂vHi

of certain subgraphs Hi of G, and then define the relative degree to be the limit
of these ratios as the Hi in some sense converge to ω. This intuitive idea can
be formalised as follows.

We call a subgraph H of a graph G an ω-region if ∂vH is finite and H
contains a ray of the end ω ∈ Ω(G). We write ΩG(H) for the sets of all ends of
G that have a ray in H.

Now, for a locally finite graph G, write (Hi)i∈N → ω if (Hi)i∈N is an infinite
sequence of distinct ω-regions of G such that Hi+1 ⊆ Hi − ∂vHi and ∂vHi+1 is
an inclusion-minimal ∂vHi–ΩG(Hi+1) separator, for each i ∈ N. Note that by
the local finiteness of G such sequences do exist. Define

de/v(ω) := inf
(Hi)i∈N→ω

lim inf
i→∞

|∂eHi|
|∂vHi|

.

This definition leads to the desired results for locally finite graphs. Let
δV,Ωe/v (G) denote the minimum (relative) degree, taken over all vertices and
ends of the graph G. The constants c1, c2 ∈ R+ are as in the corresponding
theorems for finite graphs.

Theorem 3. [4] Let k ∈ N and let G be a locally finite graph.

(a) If δV,Ωe/v (G) ≥ c1k2, then Kk is a topological minor of G.

(b) If δV,Ωe/v (G) ≥ c2k
√

log k, then Kk is a minor of G.

For arbitrary infinite graphs it is necessary to adapt the definition of the
relative degree. This is so as now there may be vertices dominating5 ends.
In that case, the sequences (Hi)i∈N cannot satisfy the condition that Hi+1 ⊆
Hi − ∂vHi. We thus ask:

3The edge-boundary of a subgraph H of a graph G is the set ∂eH := E(H,G−H).
4The vertex-boundary of a subgraph H of a graph G is the set ∂vH := NG(G−H).
5A vertex is said to dominate an end ω if for some ray R ∈ ω there are infinitely many

v–V (R) paths, disjoint except in v.
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Question 4. Does Theorem 3 extend to arbitrary infinite graphs? How does
the (relative) end degree have to be defined in this case?

A partial answer to Question 4 will be provided in [6]. A second not less
interesting question is:

Question 5. Are there extensions of the results mentioned in the beginning, if
we let k be an infinite cardinal?
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