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Abstract. In a previous work we began to study the question of “how
to compare” cellular automata (CA). In that context it was introduced
a preorder (CA,<) admitting a global minimum and it was shown that
all the CA satisfying very simple dynamical properties as nilpotency
or periodicity are located “on the bottom of (CA,<)”. Here we prove
that also the (algebraically amenable) additive CA over Z7,, are located
on the bottom of (CA,<). This result encourages our conjecture that
says that the “distance” from the minimum could represent a measure of
“complexity” on CA. We also prove that the additive CA over ZZ, with p
prime are pairwise incomparable. This fact improves our understanding
of (CA,<) because it means that the minimum, even in the canonical
order compatible with <, has infinite outdegree.

1 Introduction

One-dimensional cellular automata with radius 1, or simply CA, are infinite
arrays of finite-state machines called cells and indexed by ZZ. These identical
cells evolve synchronously at discrete time steps following a local rule by which
the state of a cell is determined as a function of its own state together with the
states of its two neighbors. These devices, despite their simplicity, may exhibit
very complex behavior.

In order to “understand” these CA one should find some criteria capable of
structuring them into natural classes or hierarchies. In this direction, the clas-
sification of S. Wolfram [11], though heuristical and coarse, corresponds to the
best-known attempt. Wolfram, by “observing” the long-term behavior of “arbi-
trary” periodic configurations, distinguishes four CA classes. Some efforts have
been made in order to formalize this classification [6] or, typically by dynamical
systems arguments, to introduce new classification schemes [5, 4]. Unfortunately,
this last approach yields to some paradoxes: the shift CA, for instance, appears
to be chaotic.

CA may also be seen as computational devices. In fact, it is easy to exhibit
a CA that simulates any Turing machine [7]. In other words, the CA model
is Turing-universal. The question whether the CA model is intrinsic-universal
or, in other words, whether there exists a CA capable of simulating any other,
remained open for some years. Notice that the CA can not be simulated by



a Turing machine because the latter have a unique head which obviously will
never visit the whole tape. J. Albert and K. Culik IT exhibited in [1] an intrinsic-
universal CA. The “intrinsic-reducibility” notion induces a preorder on the set
of CA. Unfortunetly, the study of this preorder structure is very difficult: it is
based on the evolution of all the possible configurations (which are uncountable)
and it does not take explicitly into account the CA transition tables. In addition,
the “simulation” notion is so broad that a pair of CA with extremely different
dynamics could appear to be “equivalent”.

Another approach is to consider CA as algebraic objects. In this context,
with the purpose of endowing the set of CA with an order relation, it would be
sufficient to say that A is a subautomaton of B if the transition table of A is
contained (after a suitable relabeling of the states) in the transition table of B.
This notion is extremely restrictive. In fact, if A is a subautomaton of B then
the space-time diagrams of A are “cell by cell equivalent” to the corresponding
space-time diagrams of B (space-time diagrams are representations of a CA from
a particular initial configuration in Z2). In other words, A and B may not be
associated by the subautomaton relation even with their respective space-time
diagrams being identical after suitable “changes of scale”.

It seems therefore very natural to try to replace the subautomaton relation
by a new one which could take into account potential changes of scale. This
can be done by defining the powers of a CA. More precisely, let us denote by
X the CA that generates the i-scaled space-time diagram of X and which is
simply obtained by grouping ¢ cells (or states) into blocks and by considering
as transitions the interactions of neighbor blocks. Let us also note A < B when
some power of A is a subautomaton of some power of B or, equivalently, when the
space-time diagrams of A are “block by block equivalent” to the corresponding
space-time diagrams of B.

In [9] it was shown that (CA,<) is a preorder with no maximum. It was also
proved that (CA,<) admits a global minimum and that all the CA satisfying
very simple dynamical properties (nilpotents, periodics, shift-like) are located
“on the bottom of (CA,<)”. In addition, the fact that an algorithmically non-
trivial “synchronization CA” was separated from the minimum by an infinite
chain led us to conjecture that the “distance” from the minimum could represent
a measure of “complexity” on CA.

In this paper we give more “evidence” supporting the intuitive expectation
that says that the “simplest” CA should be located on the bottom of (CA,<) or,
more precisely, that the “simplest” CA should be located immediately above the
global minimum. By following an algebraic criterion of simplicity we decide to
study the class of additive CA over ZZ,. In fact, these CA have been extensively
studied because of their amenability to algebraic analysis [8, 2]. We prove that,
for p prime, the additive CA over ZZ, are located on the bottom of (CA,<). We
also show that the additive CA over ZZ, with p prime are pairwise incomparable.
Therefore, if we note by CA* the set of CA modulo the canonical equivalence
relation induced by <, then the minimum of the order (CA* ,<) has infinite
outdegree. Until now, we had no examples of unbounded outdegrees in (CA* <).



2 Preliminaries

In this section we formally introduce the preorder (CA,<) and we recall some
already known results. First, a CA is defined by a couple (Q,d) where @ is a
finite set of states and § : @3 — @ is a transition function. We say that (Q1,d1)
is a subautomaton of (2, d2), and we note (Q1,d1) C (Q2,d2), if there exists an
injection ¢ : @1 — @2 such that for all z,y,z € Q1:

p(9i(2,y,2)) = da(p(2), 0 (y), p(2))-

When the function ¢ is a bijection we say that (Q1,d1) and (Q2,d2) are
isomorphic and we note (Q1,d1) = (Q2,d2).

Let IN* = IN — {0}. For any CA (Q,d) the evolution of a finite block of
states looks like a light-cone (see Figure 1-i). This basic fact inspires the notion
of the n-block evolution function §” : Q?"*! — @, which is recursively defined
for all n € IN* as follows:

(51(w—11 Wy, wl) = 5('(1)_1, Wg, '(U1),
5n(w—n s, Woy e, wn) = 5n_1(5(w—n; W_n41, w—n+2) T '(5(11)”_2, Wn -1, wn))
By grouping several states into blocks and by letting interact triplets of blocks

as schematically appears in Figure 1-ii, we generate CA with (exponentially)

more states. Formally, the n-power of a CA (Q,d) is the CA (Q,8)" = (Q",483),
where ¢ € Q" is denoted by (g1, -+, ¢n) and for all 7, Y, 7 eqQn:

(53(?7?’7))2 :5n('ri1"'J'rn:yla'"ayia"':ynazla"'azi)-

— INZINTINININ

0] (i)

Fig.1. (i) Dependencies diagram representing a block of states evolution as a
light-cone. (ii) Interaction of three blocks.

We relate two CA by < when some power of the first is a subautomaton of
some power of the second. More precisely, for (Q1,d1) and (Q2,d2):

(Q1,61) < (Q2,02) < 3In,m € IN" : (Q1,61)" C (Q2,52)™.

In [9] it was shown that (CA <) is a preorder. In addition, it was proved
that (CA,<) admits a global minimum corresponding to the (set of isomorphic)



CA having a single state. This fact allows us to define the “bottom of (CA <)”.
More precisely, a CA is said to belong to the bottom of (CA,<) if there is
no other CA located strictly between the minimum and itself. In other words,
(Q*,0*) belongs to the bottom of (CA,<) if for any other non-singleton CA
(@,9), (@,0) < (@Q*,8*) = (Q*,d*) < (Q,9). Finally, the following lemma is

going to be used later:

Lemma 1. If (Q,9) < (Q,S) then there exist ig, jo € IN* and q§ € Q™ such
that (Q,8)" C (Q,0)° and 63 (43,43, 90) = 6.

Proof. Let (Q,d) < (Q,S) By definition, there exist 7,5 € IN* such that
(Q,3)" C (Q,d)?. By the finiteness of @ there exist ¢ € Q and k € IN™ such
that §%(g---q) = q. Considering the fact that (Q,d)* C (Q,d)’* [9], the lemma

is concluded for iy = ik, jo = jk and g§ = (¢---9). O

3 Permutive CA

The notion of permutive CA has been extensively used (see for instance [10]).
A given CA (Q,0) is said to be right permutive if for all a,b € @ the function
d(a,b,-) : Q@ — Q is bijective. A CA (Q,J) is said to be left permutive if for all
a,b € @ the function 0(-,a,b) : @ — @ is bijective. A CA (Q,d) is said to be
permutive if it is right and left permutive.

Here we prove that all the subautomata and all the powers of a given per-
mutive CA are permutive.

Lemma 2. Let (Q2,82) be a permutive CA. If (Q1,01) is such that (Q1,61) C
(Q2,02) then (Q1,01) is also permutive.

Proof. Direct. a

Lemma 3. Let (Q,8) be a CA and let n € IN*. (Q,d) is permutive if and only
if (Q,0)"™ is permutive.
Proof. We prove the equivalence for the right permutivity. For the left permutiv-
ity the proof is identical. Let us therefore assume (@, d) to be right permutive. It
is easy to prove by induction that for all m € IN*, for all @ € Q?™, and for all
2,y € Q: (5’”(7:13) = (5m(7y) =z =y. Let 7,7,?, Y EQM.If T # Y then
there is an index ¢ € {1, ---,n} such that ¢ = min{j € {1,---,n} : &; # y; }.
It follows that 0" (a; - anby - -bpxy---2;) # 0™ (ai---anby---bpxy---y;), and
therefore (52(@, b, @))i # (62(, b, 7).

Let us assume now that (@, )™ is right permutive (notice that the non-trivial
case is when n > 1). Let a,b,z,y € Q. If (a,b,z) = d(a, b, y) then:

6g(a...a’a...a’a...abx) :5g(a"'a’a"'a’a"'aby),
n—2 n—2

and therefore (a---abx) = (a---aby), which implies that z = y. O

n—2 n—2



4 Additive Cellular Automata Over ZZ,

This section is the core of the present work. Here we prove that, for p prime, the
additive CA over Z, are pairwise incomparable (Corollary 9) and that they are
all located on the bottom of (CA,<) (Corollary 12).

Let us start by denoting, for each p € IN*, p > 1, the additive abelian group
of integers modulo p by (Z,,+). For each n € IN* we denote the canonical
product group by (Z},,+). More precisely, for all (z1, -+, 2a), (Y1, -, yn) :

(Ila"'7rn)+(yla"':yn) :(I1+y1,"'7l‘n+2n)~

Stated for arbitrary groups of finite order, the following proposition appears
in any introductory textbook of Algebra (see for instance [3]).

Proposition4. Let pn € IN*,p > 1, and let X C Z; be a nonempty set. If

(X,4) is such that for all T, YEX: T+ 7Y EX, then (X,4) is a subgroup
of (Z,,+) and |X| | p". Moreover, if p is prime then:

X = kH Xi, with Xy = Zp or Xy = {0} for all k € {1,---,n}.
:1

To the abelian group (Z,,+) we associate in the canonical way the CA
(Zp,,®) such that for all ,y,2 € Z, : ®(z,y,2) = z + y + z. Similarly, to the
product group (%, +) we associate the CA (Z},®) in such a way that for all
Tz, Y, 7€ VA EB(?, v, 7) =7 + ¥ + 7. Finally, the n-power of the CA
(Zp,®) corresponds, by definition, to (Z,, ®)" = (Z}, ®5).

Remark. Notice that in Z; the operations & and @7 are not the same. For

instance, if we consider the set Z3 (see Figure 2):

®((2,2,1,2),(1,1,0,2),(0,1,2,1)) = (0,
@é((?,?,1,2),(1,1,0,2),(0,1,2 1 2
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Fig.2. ®5((2,2,1,2),(1,1,0,2),(0,1,2,1)) = (2,1,1,1).

Lemma 5. For allp,n € IN",p> 1, the CA (Z,,®)" is permutive.



Proof. By Lemma 3 together with the permutivity of (Z,, &). O

The following (and easy to prove) “superposition principle” [8] reflects why
additive CA are so amenable to algebraic analysis.

Proposition 6 The superposition principle. Let p,n € IN* p > 1. For all
21,785,095, 7H,7 € 7, it holds the following:
®g(E + 7,9 + .5 + 7)) = (7, 1, ) + @b (T, W, 7).
%

Proposition7. Let pn € IN*p> 1, and let X C Z, with 0 = (0,---,0) €
X. It holds that if (X,®5) C (Z},®5) then (X, +) is a subgroup of (Z};,+).

Proof. Let (X,®¢) C (Z,,®5) and let 3, yd € X. Considering Lemma 2 to-
gether with Lemma 5, it follows that (X, ®%) is permutive and therefore there

exists @ € X such that @8(070), 73, ﬁ) = 0. By the superposition principle:

— =
eag(o%,%),ﬁJr%)):@S@@,HH@S(O, 0, %)
=a3(0, 0, W) =wex.

On the other hand, again by permutivity of (X', ®%), there exists I eX
such that @g(c%), 0, :L‘_*>) = y7. Finally, now by permutivity of (Z @g), T =
(T + W) e X. 0

Proposition 8. Let (Q,0) be a CA and let p € IN*,p > 1. If (Q,0) < (Z,, D)
then there exist i,j € IN* and an injection v : Q' — Z] such that:

(Q.8) = (¥(Q"),8}) € (7], &),

with (Y(Q?), +) being a subgroup of (Z‘,f,, +).

Proof. Let us suppose that (Q,d) < (Z,,®). By definition, there exist ¢, j € IN~
such that (Q,d)" C (Z,,®)’ by some injection ¢. Moreover, by Lemma 1, we can
assume that there exists g3 € Q' such that (% (ﬁ, 7, %)) = ¢ and therefore
EB]( ( ), SD(QO) 30(%))) = go(ﬁ) Let us define the injection ¢ : Q' — Zg
in such a way that, for all 7 € Q' : 1/}( ) = 30( ) — «p(ﬁ). Let us denote
X = ¢(Q"). Notice that 0= (0,---,0) € X because 0 = 90(%)) - go(ﬁ).

In order to prove that (Q,d) = (X, ®L) C (3, @) it suffices to prove that
(P(@), 53) = (1,8}) becase (Q,0) = (4(Q),55). Lot : p(Q') > X be
such that n(7) =
addition, for all

J,

7 - z,o(qo) The function 7 is obviously a bijection and, in

7, Y, 7 €p(@):

n@Y(F 7. 7)) = (7. 7. F) - @glp (%)),SO(W):SO(%)))

?)
=a&L(n(T),n(V).n (

From Proposition 7, it follows that (¢/(Q?), +) is a subgroup of (Z —|—). O



Remark. The process of searching additive CA (Z,, ®) located on the bottom of
(CA,<) may be restricted to p prime because if a,b € IN™ are such that a|b then
(Z4,®) < (Zp,®). In fact, it suffices to notice that (ZZ,,®) C (Zs, ®) by the
injection ¢ : ZZ, — Z, which assigns to each @ € Z7, the value p(z) = %’” € Uy.

Corollary 9. Let p,q > 1 be prime numbers. If p # q then (Z,,®) £ (Z4,®).

Proof. Let us suppose that (Z,,®) < (Z4,®). Then, by Proposition 8, there

exist 4,j € IN® and an injection ¢ : Z — Zg such that (1/)(2;7),—}—) is a

subgroup of (Z7,+). By Proposition 4, p'l¢’. This is a contradiction. O
[o oo 0000 0]
01202102102

2220002221110
002000002001000
01200000002100000
0001111111110000000
000001001001000000000
00000001202100000000000
0000000001110000000000000
[oooooooo00Joo(moooooo/ooooo0oo0o00O0]
[o oo o000 0]
00001201201
0000001112220
000000001002000
00000000001200000
0000000000001 111111
000000000000001001001
00000000000000001202100
0000000000000000001110000
[oooooooo00Jooooooo0o0o0/oo(®ooooo00]
Fig.3. 0% (0,2, 0) = a3 (0,0, a) =

Proposition10. For all o € IN* and p > 1 prime it holds that:
(Z} &) = (Z,, &)

p ]
On the other hand, for every X C Zga such that |X| > 1 and (X,EB‘;Q)
(Zia,@g]) with (X,4) being a subgroup of (Zia,—l—), it holds that (Z,, ®)
(X, %5 ).

<
c

Proof. By using the well-known dipolynomial representation of additive CA
that appears in [8], together with the fact that a dipolynomial over Z, of



S 2" it can be proved that (see
%

Figure 3): @8 (7,0,0) = & (0,2, 0) = @4 (0,0,8) = &, with
e =(0,---,0,1,0,---,0) € ZZ% and 0 = (0, -,0).

N—_——

Re{L, o)

The previous result, together with the superposition principle, allows us to
conclude, as it appears in the example of Figure 4, that (ZZ0 , ®) = (Z,, @)P°.
Finally, let X C Zga be such that |[X'] > 1 and (X, @F ) C (ZZQ,GBZ ) with
(X, 4+) being a subgroup of (Zga ,+). By considering Proposition 4 we conclude
the existence of an index kg € {1,---,p“} such that Xy, = Z,. It follows that

(Z,,®) C (X, EBZQ) by the injection ¢ : ZZ, — X that assigns, to each ¢ € Z,,

the image p(z) = (0,---,0,2,---,0). O
N——’
ko
[1210201 2 1]
11220111220
1121222022120
121100200020201
11220210120111022
1121222111222022212
121100200100200020011
1212111102111102101202°2
1002211211100100022200020
[202101121[/211201021/01102101 2]

2

Fig.4. (7% @) = (Zs,)>.

Proposition11. Let n € IN* and let p > 1 be prime. If X C Z; is such that
|X] > 1 and (¥, ®5) C (Z,, D) with (X, +) being a subgroup of (Z,+), then
there exists m € IN™ satisfying (Z', ®F) C (¥, ®g).

Proof. Let us consider the decomposition n = Ap® with € IN and X € IN*
such that p fA. Let us assume first that A = 1. If & = 0 then, considering that
(X,+) is a subgroup of (Z,, +) together with the fact that |X| > 1, it can be
concluded by Proposition 4 that X = Z, and therefore (¥, ®) = (Z,,®). On
the other hand, if @ > 0 then, by considering Proposition 10, we conclude that
(Z,,®) C (X, EBZQ). Let us assume now that A > 1. By Proposition 4:

Ap®
X = [ Xk, with Xy = Z, or X = {0} forall k € {1,---, Ap*}.
k=1

Let us suppose that there exist ki, ks € {1, -, Ap*} with k2 — k1 = p® such
that Xy, = {0} and Xy, = Z,. Let e, = (0,---,0,1,0,---,0). It follows, as it
N —’

k2



is schematically shown in Figure 5, that (@gpa(e_kg, 6), ?))kl = Amod p # 0,

and then (@gpa (&2, 6), 6)))k1 ¢ Xp,, which is a contradiction. We can therefore
assume that X is such that for any pair of indexes k1, ks € {1, - -, Ap®} satisfying
that ko — k1 = p® it holds that Xk, = AXy,. Let k € {1,---,p*} be such that
Xy, = Z,. This k does exist because || > 1. It follows, as it is shown in the

example of Figure 6, that (Z,,®)* C (X, @gpa). In fact, it suffices to consider
the injection ¢ : Z;‘ — X such that for all 7 = (x1,---,2)) € Z;‘ and for all
ES {1::)‘pa} :

(p(@))i = { (¥)izpyy i 0=k mod p _
0 otherwise.

[0--0oMo--0o®o----- 0]
k4 K4
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n - =
Fig.5. (95(¢x}, 0, 0))k, = Amod p

[o(Wooo0(@®0oo0o0®o 0]
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0@oo0o0@ooo0@ooo@®ooo@®ooo@oo0(@o00

[oDooo0o®ooo0(@o ofo(®o 0 0(®ooo0(@®ooJo®@ooo®ooo(Do o]

Fig. 6. (Z2,®)° C (X, @) with the index k =2 € {1,---,2°}.



Corollary 12. Let (Q),0) be a CA with |@Q| > 1 and let p > 1 be prime. It holds
that if (Q,d) < (Zp,®) then (Z,,d) < (Q,9).

Proof. Let us suppose that (Q,d) < (Zp,®). From Proposition 8 there exist
i,j € IN* and an injection 1 : QF — Zi such that (Q,d)" = (w(QZ),@Jg) C
(Zi,@é), with (¥(Q?),+) being a subgroup of (Zi,—i—)}. Then, by Pr(?posi—
tion 11, there exists m € IN™ such that (Z,, ®)™ C (¢¥(Q*),®5) = (Q,d)'. O

Remark. If we denote by ~ the canonical equivalence relation induced by <,
then the minimum of the canonical order (CA/~,<) has infinite outdegree.

5 Concluding Remarks

We have shown that, according to (CA,<), all the additive CA over Z, with p
prime have the same “complexity”: they are all incomparable and located imme-
diately above the minimum. Moreover, for finding the position of any additive
CA in (CA,<) one should follow simple number divisibility considerations. Nev-
ertheless, one question remains open: given z,y,i,j € IN* with zf|y/, is it true
or false that (Z,,®) < (Z,,®) ?
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