
Distributed Certification for Classes of Dense
Graphs
Pierre Fraigniaud #

IRIF, Université Paris Cité, CNRS, France

Frédéric Mazoit #

LaBRI, Université de Bordeaux, France

Pedro Montealegre #

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

Ivan Rapaport #

DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

Ioan Todinca #

LIFO, Université d’Orléans and INSA Centre-Val de Loire, France

Abstract
A proof-labeling scheme (PLS) for a boolean predicate Π on labeled graphs is a mechanism used
for certifying the legality with respect to Π of global network states in a distributed manner. In a
PLS, a certificate is assigned to each processing node of the network, and the nodes are in charge of
checking that the collection of certificates forms a global proof that the system is in a correct state,
by exchanging the certificates once, between neighbors only. The main measure of complexity is the
size of the certificates. Many PLSs have been designed for certifying specific predicates, including
cycle-freeness, minimum-weight spanning tree, planarity, etc.

In 2021, a breakthrough has been obtained, as a “meta-theorem” stating that a large set of
properties have compact PLSs in a large class of networks. Namely, for every MSO2 property Π
on labeled graphs, there exists a PLS for Π with O(log n)-bit certificates for all graphs of bounded
tree-depth. This result has been extended to the larger class of graphs with bounded tree-width,
using certificates on O(log2 n) bits.

We extend this result even further, to the larger class of graphs with bounded clique-width,
which, as opposed to the other two aforementioned classes, includes dense graphs. We show that, for
every MSO1 property Π on labeled graphs, there exists a PLS for Π with O(log2 n)-bit certificates
for all graphs of bounded clique-width. As a consequence, certifying families of graphs such as
distance-hereditary graphs and (induced) P4-free graphs (a.k.a., cographs) can be done using a PLS
with O(log2 n)-bit certificates, merely because each of these two classes can be specified in MSO1.
In fact, we show that certifying P4-free graphs can be done with certificates on O(log n) bits only.
This is in contrast to the class of C4-free graphs (which does not have bounded clique-width) which
requires Ω̃(

√
n)-bit certificates.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases CONGEST, Proof Labelling Schemes, clique-width, MSO

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.20

Related Version Full Version: https://arxiv.org/abs/2307.14292 [35]

Funding Pierre Fraigniaud: Additional support for ANR projects QuData and DUCAT.
Pedro Montealegre: This work was supported by Centro de Modelamiento Matemático (CMM),
FB210005, BASAL funds for centers of excellence from ANID-Chile, and ANID-FONDECYT 1230599
Ivan Rapaport: This work was supported by Centro de Modelamiento Matemático (CMM), FB210005,
BASAL funds for centers of excellence from ANID-Chile, and ANID-FONDECYT 1220142.

© Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
mailto:frederic.mazoit@labri.fr
mailto:p.montealegre@uai.cl
mailto:rapaport@dim.uchile.cl
mailto:ioan.todinca@univ-orleans.fr
https://doi.org/10.4230/LIPIcs.DISC.2023.20
https://arxiv.org/abs/2307.14292
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Distributed Certification for Classes of Dense Graphs

1 Introduction

Checking whether a distributed system is in a legal global state with respect to some boolean
predicate occurs in several domains of distributed computing, including the following.

Fault-tolerance: the occurrence of faults may turn the system into an illegal state that
needs to be detected for allowing the system to return to a legal state.
The use of subroutines as black boxes: some of these subroutines may contain bugs, and
produce incorrect outputs that need to be checked before use in the protocol calling the
subroutines.
Algorithm design for specific classes of systems: an algorithm dedicated to some specific
class of networks (e.g., algorithms for trees, or for planar networks) may cause deadlocks
or live-locks whenever running on a network outside the class. The membership to the
class needs to be checked before running the algorithm.

In all three cases above, the checking procedure may be impossible to implement without
significant communication overhead. A typical example is bipartiteness, whether it be applied
to the network itself, or to an overlay network produced by some subroutine.

1.1 Proof-Labeling Schemes
Proof-labeling scheme (PLS) [46] is a popular mechanisms enabling to certify correctness
w.r.t. predicates involving some global property, like bipartiteness. A PLS involves a prover
and a verifier. The prover has access to the global state of the network (including its
structure), and has unlimited computational power. It assigns certificates to the nodes.
The verifier is a distributed algorithm running at each node, performing in a single round,
which consists for each node to send its certificate to its neighbors. Upon reception of the
certificates of its neighbors, every node performs some local computation and outputs accept
or reject. To be correct, a PLS for a predicate Π must satisfy:

the global state of the network satisfies Π
⇕

the prover can assign certificates such that the verifier accepts at all nodes.

For instance, for bipartiteness, the prover assigns a color 0 or 1 to the nodes, and each node
verifies that its color is 0 or 1, and is different from the color of each of its neighbors. If
the network is bipartite then the prover can properly 2-color the nodes such that they all
accept, and if the network is not bipartite then, for every 2-coloring of the nodes, some of
them reject as this coloring cannot be proper.

The PLS certification mechanism has several desirable features. First, if the certificates
are small then the verification is performed efficiently, in a single round consisting merely of
an exchange of a small message between every pair of adjacent nodes. As a consequence,
verification can be performed regularly and frequently without causing significant communic-
ation overhead. Second, if the network state does not satisfy the predicate, then at least one
node rejects. Such a node can raise an alarm or launch a recovery procedure for allowing
the system to return to a correct state, or can stop a program running in an environment
for which it was not designed. Third, the prover is an abstraction, for the certificates can
be computed offline, either by the nodes themselves in a distributed manner, or by the
system provider in a centralized manner. For instance, a protocol constructing an overlay
network that is supposed to be bipartite, may properly 2-color the overlay for certifying its
bipartiteness. It follows from their features that PLSs are versatile certification mechanisms
that are also quite efficient whenever the certificates for legal instances are small.



P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:3

Many PLSs have been designed for certifying specific predicates on labeled graphs,
including cycle-freeness [46], minimum-weight spanning tree (MST) [45], planarity [31],
bounded genus [25], H-minor-freeness for small H [6], etc. In 2021, a breakthrough has been
obtained, as a “meta-theorem” stating that a large set of properties have compact PLSs in a
large class of networks (see [27]). Namely, for every MSO2 property1 Π, there exists a PLS
for Π with O(log n)-bit certificates for all graphs of bounded tree-depth, where the tree-depth
of a graph intuitively measures how far it is from being a star. This result has been extended
to the larger class of graphs with bounded tree-width (see [36]), using certificates on O(log2 n)
bits, where the tree-width of a graph intuitively measures how far it is from being a tree.
Although the class of all graphs with bounded tree-width includes many common graph
families such as trees, series-parallel graphs, outerplanar graphs, etc., it does not contain
families of dense graphs. In this paper, we focus on the families of graphs with bounded
clique-width, which include families of dense graphs.

1.2 Clique-Width
Intuitively, the definition of clique-width is based on a “programming language” for con-
structing graphs, using only the following four instructions (see [16] for more details):

Creation of a new vertex v with some color i, denoted by color(v, i);
Disjoint union of two colored graphs G and H, denoted by G ∥ H;
Joining by an edge every vertex colored i to every vertex colored j ≠ i, denoted by i ⋊⋉ j;
Recolor i into color j, denoted by recolor(i, j).

For instance, the n-node clique can be constructed by creating a first node with color
blue, and then repeating n − 1 times the following: (1) the creation of a new node, with
color red, (2) joining red and blue, and (3) recoloring red into blue. Therefore, cliques can
be constructed by using two colors only. Similarly, trees can be constructed with three colors
only. This can be proved by induction. The induction statement is that, for every tree T ,
every vertex r of T , and every two colors c1, c2 ∈ {blue, red, green}, T can be constructed
with colors blue, red, and green such that r is eventually colored c1, and every other vertex is
colored c2. The statement is trivial for the single-node tree. Let T be a tree with at least two
nodes, let r be one of its vertices, and let c1, c2 be two colors. Given an arbitrary neighbor s

of r, removing the edge {r, s} results in two trees Tr and Ts. By induction, construct Tr and
Ts separately so that r (resp., s) is eventually colored c1 (resp., c2) and all the other nodes
of Tr and Ts are colored c3 /∈ {c1, c2}. Then form the graph Tr ∥ Ts, and, in this graph, join
colors c1 and c2, and recolor c3 into c2.

The clique-width of a graph G, denoted by cw(G), is the smallest k ≥ 0 such that G

can be constructed by using k colors. For instance, cw(Kn) ≤ 2 for every n ≥ 1, and, for
every tree T , cw(T ) ≤ 3. A family of graphs has bounded clique-width if there exists k ≥ 0
such that, for every graph G in the family, cw(G) ≤ k. Any graph family with bounded
tree-depth or bounded tree-width has bounded clique-width [12, 48]. However, there are
important graph families with unbounded tree-width (and therefore unbounded tree-depth)
that have bounded clique-width. Typical examples (see [17]) are cliques (i.e., complete

1 Monadic second-order logic (MSO) is the fragment of second-order logic where the second-order
quantification is limited to quantification over sets. MSO1 refers to MSO on graphs with quantification
over sets of vertices, whereas MSO2 refers to MSO on graphs with quantification over sets of vertices
and sets of edges.

DISC 2023



20:4 Distributed Certification for Classes of Dense Graphs

graphs), P4-free graphs (i.e., graphs excluding a path on four vertices as an induced subgraph,
a.k.a., cographs), and distance hereditary graphs (the distances in any connected induced
subgraph are the same as they are in the original graph).

Many NP-hard optimization problems can be solved efficiently by dynamic programming
in the family of graphs with bounded clique-width. In fact, every MSO1 property on graphs
has a linear-time algorithm for graphs of bounded clique-width [16]. In this paper we show
a similar form of “meta-theorem”, regarding the size of certificates of PLS for monadic
second-order properties of graphs with bounded clique-width.

1.3 Our Results
Our main result is the following. Recall that a labeled graph is a pair (G, ℓ), where G is a
graph, and ℓ : V (G) → {0, 1}⋆ is a function assigning a label to every node in G.

▶ Theorem 1. Let k be a non-negative integer, and let Π be an MSO1 property on node-
labeled graphs with constant-size labels. There exists a PLS certifying Π for labeled graphs
with clique-width at most k, using O(log2 n)-bit certificates on n-node graphs.

The same way several NP-hard problems become solvable in polynomial time in graphs
of bounded clique-width, Theorem 1 implies that several predicates for which every PLS
has certificates of polynomial size in arbitrary graphs have a PLS with certificates of
polylogarithmic size on graphs with bounded clique-width. This is for instance the case of
non-3-colorability (which is a MSO1 predicate), for which every PLS has certificates of size
Ω̃(n2) bits in arbitrary graphs [42]. Theorem 1 implies that non-3-colorability has a PLS with
certificates on O(log2 n) bits in graphs with bounded clique-width, and therefore in graphs of
bounded tree-width, cographs, distance-hereditary graphs, etc. This of course is extended to
non-k-colorability, as well as other problems definable in MSO1 such as detecting whether the
input graph does not contain a fixed subgraph H as a subgraph, induced subgraph, minor,
etc.

In fact, Theorem 1 can be extended to properties including certifying solutions to
maximization or minimization problems whose admissible solutions are defined by MSO1
properties. For instance maximum independent set, minimum vertex cover, minimum
dominating set, etc.

In the proof of Theorem 1, we provide a PLS that constructs a particular decomposition
using at most k · 2k−1 colors (the clique-width of the decomposition). It is through that
decomposition that the PLS certifies that the input graph satisfies Π.

An application of Theorem 1 is the certification of certain families of graphs. That is,
given a graph family F , designing a PLS for certifying the membership to F . Interestingly,
there are some graph classes F that are expressible in MSO1 and, at the same time, have
clique-width at most k. Theorem 1 provides a PLS for certifying the membership to F in
such cases. Indeed, the PLS first tries to build a decomposition of clique-width at most
k · 2k−1. If there is no such decomposition, then the input graph does not belong to F .
Otherwise, the PLS uses the decomposition to check the MSO1 property that defines F .

▶ Corollary 2. Let k be a non-negative integer, and let F be graph family expressible in
MSO1 such that all graphs of the family have clique-width at most k. Membership to F can
be certified with a PLS using O(log2 n)-bit certificates in n-node graphs.

For instance, for every k ≥ 0, the class of graphs with tree-width at most k can be certified
with a PLS using O(log2 n)-bit certificates. Indeed, “tree-width at most k” is expressible in
MSO1, and the class of graphs with tree-width at most k forms a family with clique-width at



P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:5

most 3 · 2k−1 + 1 [12]. Another interesting application is the certification of P4-free graphs.
Indeed, “excluding P4 as induced subgraph” is expressible in MSO1, and P4-free graphs form
a family with clique-width at most 2 [17]. It follows that P4-free graphs can be certified with
a PLS using O(log2 n)-bit certificates. This is in contrast to the class of C4-free graphs (i.e.
graphs not containing a cycle on four vertices, whether it be as induced subgraph or merely
subgraph), which requires certificates on Ω̃(

√
n) bits [20]. In fact, in the case of cographs,

the techniques in the proof of Theorem 1 can be adapted so that to save one log-factor, as
stated below.

▶ Theorem 3. The class of (induced) P4-free graphs can be certified with a PLS using
O(log n)-bit certificates in n-node graphs.

Note that there is a good reason for the huge gap in terms of certificate-size between
P4-free graphs and C4-free graphs. The point is that, for any graph pattern H, the class of
H-free graphs has bounded clique-width if and only if H is an induced subgraph of P4 [19].
Therefore, C4-free graphs (as well as triangle-free graphs) do not have bounded clique-width,
as opposed to P4-free graphs (and P3-free graphs, which are merely cliques).

1.4 Related Work
Proof-Labeling Schemes (PLSs) have been introduced and thoroughly studied in [46]. Variants
have been been considered in [42] and [34], which slightly differ from PLSs: the former allows
each node to transfer no only its certificates, but also its state, and the latter restricts the
power of the oracle, which is bounded to produce certificates independent of the IDs assigned
to the nodes. All these forms of distributed certifications have been extended in various
directions, including tradeoffs between the size of the certificates and the number of rounds of
the verification protocol [30], PLSs with computationally restricted provers [24], randomized
PLSs [38], quantum PLSs [33], PLSs rejecting at more nodes whenever the global state is
“far” from being correct [28], PLSs using global certificates in addition to the local ones [32],
and several hierarchies of certification mechanisms, including games between a prover and
a disprover [1, 29], interactive protocols [18, 44, 47], and even recently zero-knowledge
distributed certification [3], and distributed quantum interactive protocols [41].

All the aforementioned distributed certification mechanisms have been used for certifying
a wide variety of global system states, including MST [45], routing tables [2], and a plethora
of (approximated) solutions to optimization problems [11, 23]. A vast literature has also
been dedicated to certifying membership to graph classes, including cycle-freeness [46],
planarity [31], bounded genus [25], absence of symmetry [42], H-minor-freeness for small H [6],
etc. In 2021, a breakthrough has been obtained, as a “meta-theorem” stating that, for every
MSO2 property Π, there exists a PLS for Π with O(log n)-bit certificates for all graphs of
bounded tree-depth [27]. This result has been extended to the larger class of graphs with
bounded tree-width, using certificates on O(log2 n) bits [36]. To our knowledge, this is the
largest class of graphs, and the largest class of boolean predicates on graphs for which it is
known that PLSs with polylogarithmic certificates exist.

The class of H-free graphs (i.e., the absence of H as a subgraph), for a given fixed
graph H, has attracted lot of attention in the distributed setting, mostly in the CONGEST
model. Two main approaches have been considered. One, called distributed property testing,
aims at deciding between the case where the input graph is H-free, and the case where the
input graph is “far” from being H-free (see, e.g., [7, 9, 26, 39]). In this setting, the objective
is to design (randomized) algorithms performing in a constant number of rounds. Such
algorithms have been designed for small graphs H, but it is not known whether there is a

DISC 2023



20:6 Distributed Certification for Classes of Dense Graphs

distributed algorithm for testing K5-freeness in a constant number of rounds. The other
approach aims at designing algorithms deciding H-freeness performing in a small number of
rounds. For instance, it is known that deciding C4-freeness can be done in Õ(

√
n) rounds,

and this is optimal [20]. The Ω̃(
√

n)-round lower bounds for C4-freeness also holds for
deciding C2k-freeness, for every k ≥ 4. Nevertheless, the best known algorithm performs
in essentially Õ(n1−Θ(1/k2)) rounds [22], even if faster algorithms exists for k = 2, 3, 4, 5,
running in Õ(n1−Θ(1/k)) rounds [10, 21]. Deciding Pk-freeness (as subgraph) can be done
efficiently for all k ≥ 0 [37]. However, this is not the case of deciding the absence of an
induced Pk, and no efficient algorithms are known apart for the trivial cases k = 1, 2, 3. The
first non-trivial case is deciding cographs, i.e., P4-freeness (as induced subgraph).

The terminology meta-theorem is used in logic to refer to a statement about a formal
system proven in a language used to describe another language. In the study of graph
algorithms, Courcelle’s theorem [13] is often referred to as a meta-theorem. It says that every
graph property definable in the monadic second-order logic MSO2 of graphs can be decided
in linear time on graphs of bounded treewidth. This theorem was extended to clique-width,
but for a smaller set of graph properties. Specifically, every graph property definable in
the monadic second-order logic MSO1 of graphs can be decided in linear-time on graphs of
bounded clique-width [16]. Note that the classes of languages in MSO1 and MSO2 include
languages that are NP-hard to decide (e.g., 3-colorability and Hamiltonicity, respectively).
We remind that MSO2 is as an extension of MSO1 which also allows quantification on sets of
edges – see Footnote 1 for a short description, or [14] for full details. Some graph properties,
e.g., Hamiltonicity, are expressible in MSO2 but not in MSO1, nevertheless MSO1 captures
a large set of properties, including many classical NP-hard problems as explained above.
Eventually, we emphasize again that, when comparing the two most famous meta-theorems,
(1) MSO2 properties are decidable in linear time on bounded treewidth graphs vs. (2) MSO1
properties are decidable in linear time on bounded clique-width graphs, the former concerns a
larger class of properties, but the latter concerns larger classes of graphs.

2 Models

In this section, we recall the main concepts used in this paper, including proof-labeling
scheme, and cographs.

2.1 Proof-Labeling Schemes for MSO Properties
For a fixed integral parameter λ ≥ 0, we consider vertex-labeled graphs (G, ℓ), where
G = (V, E) is a connected simple n-node graph, and ℓ : V → {0, . . . , λ − 1}. The label may
indicate a solution to an optimization problem, e.g., a minimum dominating set (ℓ(v) = 0
or 1 depending on whether v is in the set or not), a λ-coloring, an independent set, etc. A
labeling may also encode global overlay structures such as spanning trees or spanners, in
bounded-degree graphs or in graphs provided by a distance-2 k-coloring, for k = O(1). In
the context of distributed computing in networks, nodes are assumed to be assigned distinct
identifiers (ID) in [1, nc] for some c ≥ 1, so that IDs can be stored on O(log n) bits. The
identifier of a node v is denoted by id(v). We denote by NG(v) the set of neighbors of node v

in a graph G, and we let NG[v] = NG(v) ∪ {v} be the closed neighborhood of v.
Given a boolean predicate Π on vertex-labeled graphs, a proof-labeling scheme (PLS)

for Π is a prover-verifier pair. The prover is a non-trustable computationally unbounded
oracle. Given a vertex-labeled graph (G, ℓ) with ID-assignment id, the prover assigns a
certificate c(v) to every node v of G. The verifier is a distributed algorithm running at every



P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:7

node v of G. It performs a single round of communication consisting of sending c(v) to all
neighboring nodes w ∈ NG(v), and receiving the certificates of all neighbors. Given id(v),
ℓ(v), and {c(w) : w ∈ NG[v]}, every node v outputs accept or reject. A PLS is correct if the
following two conditions are satisfied:

Completeness: If (G, ℓ) satisfies Π then the prover can assign certificates to the nodes
such that the verifier accepts at all nodes;
Soundness: If (G, ℓ) does not satisfy Π then, for every certificate assignment to the nodes
by the prover, the verifier rejects in at least one node.

The main parameter measuring the quality of a PLS is the size (i.e., number of bits) of
the certificates assigned by the prover to each node of vertex-labeled graphs satisfying the
predicate, and leading all nodes to accept.

MSO Predicates. We focus on predicates expressible in MSO1. Recall that MSO1 is
the fragment of monadic second-order (MSO) logic on (vertex-labeled) graphs that allows
quantification on vertices and on sets of (labeled) vertices, and uses the adjacency predicate
(adj). For instance non 3-colorability is in MSO1. Indeed, for every graph G = (V, E), it can
be expressed as: for all A, B, C ⊆ V , if A ∪ B ∪ C = V and A ∩ B = A ∩ C = B ∩ C = ∅
then

∃(u, v) ∈ (A × A) ∪ (B × B) ∪ (C × C) : (u ̸= v) ∧ adj(u, v).

We shall show that, although some MSO1 predicates, like non-3-colorability, require certific-
ates on Ω̃(n2) bits in n-node graphs (see [42]), PLSs with certificates of polylogarithmic size
can be designed for all MSO1 predicates in a rich class of graphs, namely all graphs with
bounded clique-width.

2.2 Cographs and Cotrees
We conclude this section by introducing a graph class that plays an important role in this
paper. Recall that a graph is a cograph (see, e.g., [8]) if it can be constructed by a sequence
of parallel operations (disjoint union of two vertex-disjoint graphs) and join operations
(connecting two vertex-disjoint graphs G and H by a complete bipartite graphs between
V (G) and V (H)). Therefore, by definition, cographs have clique-width 2. In particular,
cliques are cographs.

It is known [8] that cographs capture precisely the class of induced P4-free graphs. We
shall show that, as opposed to C4-free graphs, which require Ω̃(

√
n)-bit certificates to be

certified by a PLS [20]2, O(log n)-bit certificates are sufficient for certifying P4-free graphs.
This result is of interest on its own, but proving this result will also play the role of a warmup
before establishing our general result about graphs with bounded clique-width. Note that
the class of P4-free graphs (i.e., cographs) can be specified by an MSO1 formula. Roughly,
the formula states that if there exists four vertices v1, v2, v3, v4 such that adj(vi, vi+1) for
i = 1, 2, 3, then adj(v1, v3) ∨ adj(v1, v4) ∨ adj(v2, v4). C4-freeness could be expressed in MSO1
as well. However, P4-free graphs have clique-width 2 whereas C4-free graphs have unbounded
clique-width – this is because there are 2Ω(n

√
n) different C4-free graphs of size n, but only

2O(n log n) n-vertex graphs of bounded clique-width.

2 The lower bound in [20] is expressed for the CONGEST and Broadcast Congested Clique models, but it
extends directly to PLSs since Set-Disjointness has non-deterministic communication complexity Ω(N)
on N -bit inputs.

DISC 2023



20:8 Distributed Certification for Classes of Dense Graphs

Given a cograph G, there is actually a canonic way of constructing G by a sequence of
parallel and join operations [8]. As explained before, this construction can be described as a
tree T whose leaves are the vertices of G, and whose internal nodes are labeled ∥ or ⋊⋉. This
tree is called a cotree, and will be used for our PLS.

3 Overview of our Techniques

The objective of this section is to provide the reader with a general idea of our proof-labeling
scheme. For a comprehensive description we refer to the full version of this article [35]. Our
construction bears some similarities with the approach used in [36] for the certification of
MSO2 properties on graphs of bounded tree-width, with certificates of size O(log2 n) bits.
However, extending this approach to a proof-labeling scheme for graphs with bounded clique-
width requires to overcome several significant obstacles. We therefore start by summarizing
the main tools used for the certification of MSO2 properties on graphs of bounded tree-width
(see Section 3.1), and then proceed with the description of the new tools required for extending
the result to graphs of bounded clique-width, to the cost of reducing the class of certified
properties from MSO2 to MSO1 (see Sections 3.2-3.6).

3.1 Certifying MSO2 Properties in Graphs of Bounded Tree-Width
Recall that a tree-decomposition of a graph G is a tree T where each node x of T , also
called bag, is a subset of V (G), satisfying the following three conditions: (1) for every vertex
v ∈ V (G) there is a bag x ∈ V (T ) that contains v, (2) for every edge {u, v} ∈ E(G), there
is a bag x containing both its endpoints, and (3) for each vertex v ∈ V (G), the set of bags
that contains v forms a (connected) subtree of T . Let Π be an MSO2 property, and let T

be a tree-decomposition of the graph G. The proof-labeling scheme aims at providing each
vertex with sufficient information for certifying the correctness of T , as well as the fact that
G satisfies Π. To do so, the certificate of each vertex is divided into two parts, one called
main messages, and the other called auxiliary messages.

Main messages. The main message of a node v is a sequence seqv representing a path
of bags in T that connects a leaf with the root, such that v is contained in at least one
bag of seqv. For each bag x ∈ seqv, the main message includes, roughly: the set of vertices
contained in x, the identifier of a vertex ℓx in x, called the leader of x, and a data structure
cx used to verify the MSO2 property Π on G. The leader ℓx of x is chosen arbitrarily among
the vertices of x that are adjacent to a vertex u belonging to the parent bag p(x) of x in T .
The vertex u is said to be responsible for x in p(x). Let us assume the following consistency
condition: for every bag x of T , every vertex in x received the same information about all the
bags from x to the root of T . Under the promise that the consistency condition holds, it is
possible to show that the vertices can collectively verify that T is indeed a tree-decomposition
of G, and that G satisfies Π.

Auxiliary messages. The role of the auxiliary messages is precisely to check the above
consistency condition. For each bag x, let τx be a Steiner tree (i.e. a minimal tree connecting
a set of vertices denoted terminals) in G rooted at the leader ℓx, with all the nodes of x

as terminals. Every vertex in τx receives an auxiliary message containing the certification
of τx (each vertex of τx receives the identifier of a root, of its parent and the distance to
the root), and a copy of the information about x given to the nodes in the bag x, through
their main messages. By using the auxiliary messages, the leader ℓx can verify whether the



P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:9

subgraph G[x] of G induced by the union of the bags in T [x] satisfies Π, where T [x] the
subtree of T containing x and all its descendants. Specifically, this verification is performed
by simulating the dynamic programming algorithm in Courcelle’s Theorem [13] as in the
version of Boire, Parker and Tovey [5]. This uses a constant-size data structure cx stored in
the auxiliary messages that “encodes” the predicate Π(G[x]). Its correctness can be verified
by a composition of the values cy for each child y of x in T . The tree τx is actually used to
transfer the information about cy from the node ℓy in x responsible for y, to the leader ℓx.

Certificate size. If T is of depth d, then the main messages are of size O(d log n) bits.
Crucially, for every graph G, there is a tree-decomposition T satisfying that, for every bag x,
there is a Steiner tree τx completely contained in G[x]. Such a decomposition is called coherent
in [36] (Lemma 3). It follows that every node participates in a Steiner tree with at most d

bags, which implies that the auxiliary messages can be encoded in O(d log n) bits. Thanks
to a construction by Bodlaender [4], it is possible to choose a coherent tree-decomposition
with depth d = O(log n), up to increasing the sizes of the bags by a constant factor only. It
follows that the certificates are of size O(log2 n) bits.

Our construction also follows the general structure described above. However, each
element of this construction has to be adapted in a highly non-trivial way. Indeed, the
grammar of clique-with, and the related structure of NLC decomposition, differ in several
significant ways from the grammar of tree-width. The rest of the section is dedicated to
providing the reader with a rough idea of how this can be done.

3.2 Clique-Width and NLC-Width

First, instead of working with clique-width, it is actually more convenient to work with the
NLC-width, where NLC stands for node-label controlled. Every graph of clique-width at
most k has NLC-width at most k, and every graph of NLC-width at most k has clique-width
at most 2k [43]. As clique-width, NLC-width can be viewed as the following grammar for
constructing graphs, bearing similarities with the grammar for clique-width:

Creation of a new vertex v with color i ∈ N, denoted by newVertexi;
Given a set S of ordered pairs of colors, and an ordered pair (G, H) of vertex-disjoint
colored graphs, create a new graph as the union of G and H, then join by an edge every
vertex colored i of G to every vertex colored j of H, for all (i, j) ∈ S; this operation is
denoted by G ⋊⋉S H;
Recolor the graph, denoted by recolorR where R : N → N is any function.

If k ≥ 1 colors are used, a recoloring function R is a function R : [k] → [k]. When R is
used, for every i ∈ [k], vertices with color i are recolored R(i) ∈ [k] (all colors are treated
simultaneously, in parallel). Note that the recoloring operation in the definition of clique-
width is limited to functions R that preserve all colors but one. Note also that, for S = ∅,
the operation G ⋊⋉S H is merely the same as G ∥ H for clique-width. We therefore use
G ⋊⋉∅ H or G ∥ H indistinctly. The NLC-width of a graph G is the smallest number of
colors such that G can be constructed using the operations above. It is denoted by nlcw(G).
For instance, the n-node clique can be constructed by creating a first node v1 with color 1,
and then repeating, for all i = 1, . . . , n − 1, (1) the creation of a new node vi+1, with color 1
as well, and (2) applying vi+1 ⋊⋉{(1,1)} Ki to get the clique Ki+1 on i + 1 vertices. Therefore,
cliques can be constructed by using one color only, i.e., nlcw(Kn) = 1 for every n ≥ 1.

DISC 2023



20:10 Distributed Certification for Classes of Dense Graphs

NLC-decomposition. For every k ≥ 1, the construction of a graph G with nlcw(G) ≤ k

can be described by a binary tree T , whose leaves are the (colored) vertices of G. In T ,
every internal node x has an identified left child x′ and an identified right child x′′, and is
labeled by ∥ or ⋊⋉S for some non-empty set S ⊆ [k] × [k]. This label indicates the operation
performed on the (left) graph G′ with vertex-set equal to the leaves of the subtree Tx′ of T

rooted at x′, and the (right) graph G′′ with vertex-set equal to the leaves of the subtree Tx′′

of T rooted at x′′. That is, node x corresponds to the operation Gx′ ∥ Gx′′ or Gx′ ⋊⋉S Gx′′ ,
depending on the label of x. In addition to its label (∥ or ⋊⋉S for some S ̸= ∅), a node may
possibly also include a recoloring function R : [k] → [k], which indicates a recoloring to be
performed after the join operation, see Figure 1 for an example.

Figure 1 An NLC decomposition tree T . Next to each node x of the tree is displayed the colored
graph G[x] corresponding to subtree T [x] of T rooted at x.

3.3 From Tree-Width to NLC-Width: The Main Messages
Let Π be an MSO1 property, and let T be an NLC-decomposition tree of a graph G with
cw(G) ≤ k. That is, we can choose the tree T as one using at most k colors. In the following,
to avoid confusion, we call vertices the elements of the vertex set of G, and nodes the elements
of the vertex-set of the decomposition tree T . The structure of our certificates differ from
the one in [36], and now we decompose the certificate assigned to each node v into three
parts: main messages, auxiliary messages, and service messages. This subsection focuses on
the main messages.

Our main messages have, to some extent, a structure similar to the main messages used
in [36] for the tree-width. In particular, vertex v receives a sequence path(v), listing all the
nodes, i.e., the whole set of operations, in the path from the root of T to the leaf of T where v

was created. For each node x in path(v), the main message also includes the vertex identifier
of a leader for x, called exit vertex of x, and denoted by exit(x). The main message also
includes a data structure h(x) that encodes the truth value of the MSO1 property on G[x].



P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:11

However, unlike the case of tree-width, where the nodes of the tree-decomposition are sets of
vertices (i.e., bags) of bounded size, the contents of a non-leaf node in an NLC-decomposition
tree T does not necessarily include information about the vertices created in T [x]. For that
reason, our proof-labeling scheme includes additional information in the main message of
v in order to verify the correctness of the given decomposition. It may actually be worth
providing a concrete example to explain the need for additional information.

For a node x different from the root, let us denote by p(x) the parent of x in T . The
main message of v includes a sequence links(v) that specifies, for each node x in path(v)
different from the root, whether x is the left or right child of p(x). For instance, in the
example of Figure 1, we have links(c) = (1, 0), indicating that, to reach the leaf creating
vertex c from the root, one must follow the right child (1), and then the left child (0). S
imilarly, links(d) = (1, 1, 0). The sequences links are also used to determine the longest
common prefixes of the main messages, when the same operations are repeated between
two children of a same node (consider for instance the case where the same operation is
performed at all the nodes of the decomposition tree). Back to our example above, let us
suppose that the sequences links(u) and links(v) specify that xt3+1(u) is the left neighbor
of xt3 , and xt3+1(v) is the right neighbor of xt3 . Using this information, u and v can infer
that it is an operation ⋊⋉S , with (c(u), c(v)) ∈ S that is specified in the description of xt3 .
With the given information, each vertex can thus check that all its incident edges are indeed
created at some node of the decomposition tree T .

It remains to check that the decomposition does not define non-existent edges. To do so,
the main message of every vertex v also includes, for each node x in path(v), and for each
i ∈ [k], the integers colori(x) representing the number of vertices of G[x] that are colored
i in the root of T [x]. (Recall that the subgraph G[x] is the subgraph of G induced by the
vertices created in the subtree T [x] of T ). Returning to our example, vertex v checks that it
has exactly colorc(u)(xt3+1(u)) neighbors with the same longest common prefix as u colored
c(u) in the left children of xt3 . Also, vertex v checks, for each i ∈ [k], that the number of
vertices colored i in node xt3 corresponds to the sum of the number of vertices colored j in
xt3+1(u) and xt3+1(v), for each color j that is recolored i by the recoloring operation defined
in xt3 . So, let us assume that the following consistency condition (analogous to the one for
the certification of tree-decompositions) holds:

C1: For every pair of vertices u, v ∈ V (G), and for every node x in both path(u) and path(v),
u and v receive the same information about all nodes in the path from x to the root of T

in their main messages, and
C2: If x is the root of T , then the data structure h(x) describes an accepting instance (i.e.,

G satisfies Π).

Assuming that the consistency condition is satisfied, it is not difficult to show that
the vertices can collectively check that the given certificates indeed represent an NLC-
decomposition tree, and that G satisfies Π. The difficulty is however in checking that the
consistency condition holds. This is the role of the auxiliary and service messages, described
next.

3.4 Checking Consistency: Auxiliary, and Service Messages
We use auxiliary and service messages for allowing our proof-labeling scheme to check the
first condition C1 of the consistency condition defined at the end of the previous subsection.

Auxiliary messages can easily be defined for every node x of T satisfying that G[x] is
connected. In that case, the auxiliary messages of all the vertices v in T [x] contain the
certificates for certifying a spanning tree τx of G[x] rooted at the exit vertex of x. Each

DISC 2023



20:12 Distributed Certification for Classes of Dense Graphs

vertex v can verify that the longest common prefix common to v and its parent in τx contains
all the nodes from the root up to x, and that the information given in the main messages
coincide for all such nodes. Observe that every vertex v may potentially contain one auxiliary
message for each node in path(v).

The case where G[x] is not connected is fairly more complicated, and we need to introduce
another type of decomposition.

NLC+ decompositions trees. Observe that G itself is connected. Therefore, there must
exist an ancestor z of x for which G[z] is connected. We could provide the vertices in G[z]
with a spanning tree of G[z] for checking the consistency in T [x]. However, the vertices in
G[z] do not necessarily contain x in the prefixes of their node sequences, so we would have to
put a copy of the main message associated to x on every node participating in the spanning
tree. Since an NLC-decomposition tree does not allow to provide a bound on the distance
between z and x in the tree, we have no control on how many copies of main messages a
vertex should handle.

Therefore, to cope with the case where G[x] is disconnected, we define a specific type of
NLC decompositions trees, called NLC+ decompositions trees. The NLC+ decomposition
trees are similar to NLC-decomposition trees, up to two important differences.

First, we allow the nodes corresponding to a ∥ operation to have arbitrary large arity, and
thus NLC+ decomposition trees are not binary trees, as opposed to NLC-decomposition
trees.
Second, if a node x induces a disconnected subgraph G[x], then its parent node p(x)
must satisfy that G[p(x)] is connected. Observe that p(x) must then correspond to a ⋊⋉
operation, and thus p(x) has only two children: x and another child, denoted by y.

Service trees. A service tree Sx for a node x such that G[x] is disconnected is a Steiner
tree in G[p(x)] rooted at the exit vertex of x, and with all the vertices of G[x] as terminals.
Each vertex of Sx (i.e., all vertices in G[x], plus some vertices in G[y] is given a service
message, which contains the certificate for the tree Sx, as well as a copy of the information
about x given in the main messages of the vertices in G[x]. Each vertex in Sx can then check
that it shares the same information about x than its parent. The properties of the NLC+
decomposition guarantee that a vertex v participates to at most two service trees, for each
node x in the sequence path(v). Indeed, vertex v necessarily participates in Sx when x is of
type ∥, and may also participate in Sy whenever the sibling y of x is of type ∥. There are
significantly more subtle details concerning service trees, but they are described in the full
version [35].

It remains to check the second condition C2 of the consistency condition defined at the
end of the previous subsection, which consists in verifying the correctness of h(x), for every
node x of T . This is explained next.

3.5 Dealing with MSO1 Predicates
In their seminal work, Courcelle, Makowsky and Rotics [16] proved that every MSO1 predicate
Π on vertex-labeled graphs can be decided in linear time on graphs of bounded clique-width,
and hence on graphs of bounded NLC-width, whenever a decomposition tree is part of the
input. The running time of the algorithm is O(n), i.e., linear in the number n of vertices of
the input graph, with constants hidden in the big-O notation that depend on the clique-width
bound, on the number of labels, and on the MSO1 formula encoding the predicate Π. Note



P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:13

that this result does not hold for MSO2 predicates, which is why our proof-labeling scheme
applies to MSO1 predicates only. We discuss the possible extension to MSO2 properties in
the conclusion (see Section 4).

For our purpose it is convenient to see the linear-time decision algorithm as a dynamic
programming algorithm over the NLC-decomposition tree of the input graph. We formalize
this dynamic programming approach following the vocabulary and notations used by Borie,
Parker and Tovey [5]. Note that the latter provided an alternative proof of Courcelle’s
theorem, but for graphs of bounded tree-width, i.e., specific to a graph grammar defining
tree-width. To design our proof-labeling scheme, we adapt their approach to a graph grammar
defining NLC-width.

Homomorphism Classes. For a fixed property Π and a fixed parameter k, there is a finite
set C of homomorphism classes (whose size depends only on Π and k) such that we can
associate to each graph G of clique-width at most k its class h(G) ∈ C (for more details
see the full version [35]). Whenever G is obtained from two graphs G1 and G2 by a ⋊⋉S

operation potentially followed by a recoloring operation R, the class h(G) only depends on
h(G1), h(G2), S ⊆ [k] × [k], and R : [k] → [k]. This property also holds whenever ⋊⋉S is
replaced by ∥. Moreover, we also extend the notion to arbitrary arity so that it holds for
the NLC+ decomposition trees. Importantly, Courcelle’s theorem [16] provides a “compiler”
allowing to compute h(G) whenever G is formed by a single vertex of color j ∈ [k], and to
compute h(G) from h(G1), h(G2), S and R whenever G = R(G1 ⋊⋉S G2).

Checking Condition C2. In our proof-labeling scheme, for each node x of the NLC+
decomposition tree, we specify h(x) as the class h(G[x]). Following the same principles as
before, the consistency of these classes can be checked by simulating a bottom-up parsing of
the decomposition tree, in a way very similar to what we described before for checking the
consistency of color(x), but replacing the mere additions by updates of the homomorphism
classes as described above.

This completes the rough description of our proof-labeling scheme.

3.6 Certificate Size
For each vertex v, the main, auxiliary, and service messages of v can be encoded using
O(log n) bits for each node x in path(v), for the following reasons.

The main message associated to a node x contains the following information. First, the
list of operations described in the node, which can be encoded in O(k2) bits. Second, the
corresponding index of links, which is just one bit representing whether x is the left or
right children of its parent. Third, the homomorphism class h(x) that can be encoded
in f(k) bits for some function f depending on the MSO1 property under consideration –
see the remark further in the text for a discussion about f . Finally, it includes the node
identifier of the exit vertex of x, and the integers colori for each i ∈ [k]. All these latter
items can be encoded on O(log n) bits.
The auxiliary message associated to node x (whenever G[x] is connected) corresponds
to the certification of a spanning tree of G[x], which can be encoded in O(log n) bits
(see [46]).
For the service messages, note that vertex v participates in at most two service trees
associated to x: the one of x (whenever G[x] is disconnected), plus the one of the sibling
y of x (when G[y] is disconnected). Again, each of these trees can be certified using
O(log n) bits.

DISC 2023



20:14 Distributed Certification for Classes of Dense Graphs

Therefore, the total size of the certificates is O(d · log n) bits, where d is the depth of the
NLC+ decomposition tree T . Our final certificate size depends then on how much we can
bound the depth d of T . Courcelle and Kanté [15] show that there always exists an NLC
decomposition tree of logarithmic depth, but it comes with a price: the width of the small
depth decomposition can be exponentially larger than the width of the original decomposition.
Specifically, Courcelle and Kanté have shown that every n-node graph of NLC-width k admits
an NLC-decomposition of width k · 2k+1 such that the corresponding decomposition tree T

has depth O(log n). Fortunately, our construction of NLC+ decomposition trees does not
increase the depth of a given NLC-decomposition tree. In other words, we can use the result
of Courcelle and Kanté to also show that NLC+ decomposition trees have logarithmic depth.
Overall, we conclude that the certificate size is O(log2 n) bits.

Remark. Our asymptotic bound on the size of the certificates hides a large dependency
on the clique-width k of the input graph. For certifying the NLC+ decomposition only, the
constant hidden in the big-O notation is single-exponential in k, given that the width of the
NLC+ decomposition tree with logarithmic depth grows to k · 2k+1. However, for certifying
an MSO1 property, the dependency on k can be much larger, as it depends on the number of
homomorphism classes. It is known that, for MSO1 properties, the number of homomorphism
classes is at most a tower of exponentials in k, where the height of the tower depends on
the number of quantifiers in the MSO1 formula. Moreover, this non-elementary dependency
on k can not be improved significantly [40]. This exponential or even super-exponential
dependency on the clique-width k is however inherent to the theory of algorithms for graphs
of bounded clique-width. The same type of phenomenon occurs when dealing with graphs of
bounded tree-width (see [40]), and the proof-labeling scheme in [36] is actually subject to
the same type of dependencies in the bound k. On the other hand, the certificate size of our
proof-labeling scheme grows only polylogarithmically with the size of the graphs.

4 Conclusion

In this paper, we have shown that, for every MSO1 property Π on labeled graphs, there
exists a PLS for Π with O(log2 n)-bit certificates for all n-node graphs of bounded clique-
width. This extends previous results for smaller classes of graphs, namely graphs of bounded
tree-depth [27], and graphs of bounded tree-width [36]. Our result also enables to establish a
separation, in term of certificate size, between certifying C4-free graphs and certifying P4-free
graphs.

A natural question is whether the certificate size resulting from our generic PLS construc-
tion is optimal. Note that one log-factor is related to the storage of IDs, and of similar types
of information related to other nodes in the graph. It seems hard to avoid such a log-factor.
The other log-factor is however directly related to the depth of the NLC-decomposition,
and our PLS actually uses certificates of size O(d · log n) bits for graphs supporting an
NLC-decomposition of depth d. Nevertheless, the best generic upper bound for the depth d of
an NLC-decomposition preserving bounded width is O(log n). This log-factor seems therefore
hard to avoid too. Establishing the existence of a PLS for MSO1 properties in graphs of
bounded clique-width using o(log2 n)-bit certificates, or proving an Ω(log2 n) lower bound on
the certificate size for such PLSs appears to be challenging.

Another interesting research direction is whether our result can be extended to MSO2
properties. It is known that the meta-theorem from [16] does not extend to MSO2. Never-
theless, this does not necessarily prevent the existence of compact PLSs for MSO2 properties



P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:15

on graphs of bounded clique-width. For instance, Hamiltonicity is an MSO2 property that
can be easily certified in all graphs, using certificates on just O(log n) bits. Is there an
MSO2 property requiring certificates of Ω(nϵ) bits, for some ϵ > 0, on graphs of bounded
clique-width? Finally, it might be interesting to study the existence of compact distributed
interactive proofs [44] for certifying MSO1 or even MSO2 properties on graphs of bounded
clique-width. Note that the generic compiler from [47] efficiently applies to sparse graphs
only whereas the family of graphs with bounded clique-width includes dense graphs.

References

1 Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. What can be
verified locally? J. Comput. Syst. Sci., 97:106–120, 2018.

2 Alkida Balliu and Pierre Fraigniaud. Certification of compact low-stretch routing schemes.
Comput. J., 62(5):730–746, 2019.

3 Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks.
In 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2426–2458, 2022.

4 Hans L Bodlaender. Nc-algorithms for graphs with small treewidth. In Graph-Theoretic
Concepts in Computer Science: International Workshop WG’88 Amsterdam, The Netherlands,
June 15–17, 1988 Proceedings 14, pages 1–10. Springer, 1989.

5 Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7(5&6):555–581, 1992. doi:10.1007/BF01758777.

6 Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. Local certification of graph decompos-
itions and applications to minor-free classes. In 25th International Conference on Principles
of Distributed Systems (OPODIS), volume 217 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

7 Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques. Distributed
Comput., 24(2):79–89, 2011.

8 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey. Society
for Industrial and Applied Mathematics, 1999.

9 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed
algorithms for testing graph properties. Distributed Comput., 32(1):41–57, 2019.

10 Keren Censor-Hillel, Orr Fischer, Tzlil Gonen, François Le Gall, Dean Leitersdorf, and Rotem
Oshman. Fast Distributed Algorithms for Girth, Cycles and Small Subgraphs. In 34th
International Symposium on Distributed Computing (DISC), volume 179 of LIPIcs, pages
33:1–33:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

11 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. In
24th International Colloquium on Structural Information and Communication Complexity
(SIROCCO), LNCS 10641, pages 71–89. Springer, 2017.

12 Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth.
SIAM Journal on Computing, 34(4):825–847, 2005.

13 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

14 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic. A
language-theoretic approach. Encyclopedia of Mathematics and its applications, Vol. 138. Cam-
bridge University Press, June 2012. Collection Encyclopedia of Mathematics and Applications,
Vol. 138. URL: https://hal.science/hal-00646514.

15 Bruno Courcelle and Mamadou Moustapha Kanté. Graph operations characterizing rank-width
and balanced graph expressions. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 66–75. Springer, 2007.

DISC 2023

https://doi.org/10.1007/BF01758777
https://doi.org/10.1016/0890-5401(90)90043-H
https://hal.science/hal-00646514


20:16 Distributed Certification for Classes of Dense Graphs

16 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

17 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discret.
Appl. Math., 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

18 Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed interactive
proofs. In 33rd International Symposium on Distributed Computing (DISC), volume 146 of
LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

19 Konrad K. Dabrowski and Daniël Paulusma. Clique-width of graph classes defined by two
forbidden induced subgraphs. The Computer Journal, 59(5):650–666, 2016.

20 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In 33rd ACM Symposium on Principles of Distributed Computing (PODC), pages
367–376, 2014.

21 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 367–376, 2014.

22 Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. Sublinear-time
distributed algorithms for detecting small cliques and even cycles. Distributed Computing,
35(3):207–234, 2022.

23 Yuval Emek and Yuval Gil. Twenty-two new approximate proof labeling schemes. In 34th
International Symposium on Distributed Computing (DISC), volume 179 of LIPIcs, pages
20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

24 Yuval Emek, Yuval Gil, and Shay Kutten. Locally restricted proof labeling schemes. In 36th
International Symposium on Distributed Computing (DISC), volume 246 of LIPIcs, pages
20:1–20:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

25 Louis Esperet and Benjamin Lévêque. Local certification of graphs on surfaces. Theor. Comput.
Sci., 909:68–75, 2022.

26 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three notes
on distributed property testing. In 31st International Symposium on Distributed Computing
(DISC), volume 91 of LIPIcs, pages 15:1–15:30. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

27 Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. What can be certified compactly?
compact local certification of MSO properties in tree-like graphs. In 41st ACM Symposium on
Principles of Distributed Computing (PODC), pages 131–140, 2022.

28 Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. J. Parallel
Distributed Comput., 166:149–165, 2022.

29 Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of local decision. Theor.
Comput. Sci., 856:51–67, 2021.

30 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redundancy
in distributed proofs. Distributed Comput., 34(2):113–132, 2021.

31 Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and Ioan
Todinca. Compact distributed certification of planar graphs. Algorithmica, 83(7):2215–2244,
2021.

32 Laurent Feuilloley and Juho Hirvonen. Local verification of global proofs. In 32nd International
Symposium on Distributed Computing, volume 121 of LIPIcs, pages 25:1–25:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018.

33 Pierre Fraigniaud, François Le Gall, Harumichi Nishimura, and Ami Paz. Distributed quantum
proofs for replicated data. In 12th Innovations in Theoretical Computer Science Conference
(ITCS), volume 185 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5


P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:17

34 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35:1–35:26, 2013.

35 Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca.
Distributed certification for classes of dense graphs, 2023. arXiv:2307.14292.

36 Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-theorem
for distributed certification. In 29th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), volume 13298 of LNCS, pages 116–134. Springer,
2022.

37 Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. ACM Trans. Parallel
Comput., 6(3):12:1–12:20, 2019.

38 Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling schemes.
Distributed Comput., 32(3):217–234, 2019.

39 Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of excluded
subgraphs. In 30th International Symposium on Distributed Computing (DISC), volume 9888
of LNCS, pages 342–356. Springer, 2016.

40 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Log., 130(1-3):3–31, 2004. doi:10.1016/j.apal.2004.01.007.

41 François Le Gall, Masayuki Miyamoto, and Harumichi Nishimura. Brief announcement:
Distributed quantum interactive proofs. In 36th International Symposium on Distributed
Computing (DISC), volume 246 of LIPIcs, pages 48:1–48:3. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

42 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
Comput., 12(1):1–33, 2016.

43 Ö. Johansson. Clique-decomposition, nlc-decomposition, and modular decomposition - rela-
tionships and results for random graphs. Congressus Numerantium, 132:39–60, 1998.

44 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
37th ACM Symposium on Principles of Distributed Computing (PODC), pages 255–264. ACM,
2018.

45 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Distrib-
uted Comput., 20(4):253–266, 2007.

46 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010.

47 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–115.
SIAM, 2020.

48 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

DISC 2023

https://arxiv.org/abs/2307.14292
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

	1 Introduction
	1.1 Proof-Labeling Schemes
	1.2 Clique-Width
	1.3 Our Results
	1.4 Related Work

	2 Models
	2.1 Proof-Labeling Schemes for MSO Properties
	2.2 Cographs and Cotrees

	3 Overview of our Techniques
	3.1 Certifying MSO_2 Properties in Graphs of Bounded Tree-Width
	3.2 Clique-Width and NLC-Width
	3.3 From Tree-Width to NLC-Width: The Main Messages
	3.4 Checking Consistency: Auxiliary, and Service Messages 
	3.5 Dealing with MSO_1 Predicates
	3.6 Certificate Size

	4 Conclusion

