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Abstract

Let X be a one-dimensional cellular automaton. A “power of X” is another cellular
automaton obtained by grouping several states of X into blocks and by considering
as local transitions the “natural” interactions between neighbor blocks. Based on
this operation a preorder < on the set of one-dimensional cellular automata is
introduced. We denote by (CA*,<) the canonical order induced by <. We prove
that (CA*,<) admits a global minimum and that very natural equivalence classes are
located at the bottom of (CA*,<). These classes remind us the first two well-known
Wolfram ones because they capture global (or dynamical) properties as nilpotency
or periodicity. Non-trivial properties as the undecidability of < and the existence
of bounded infinite chains are also proved. Finally, it is shown that (CA*,<) admits
no maximum. This result allows us to conclude that, in a “grouping sense”, there
is no universal CA.

Key words: cellular automata; grouping; dynamical classification; intrinsic
universality; order.

1 Introduction

One-dimensional cellular automata with radius 1, or simply CA, are infinite
arrays of finite-state machines called cells and indexed by Z. These identical
cells evolve synchronously at discrete time steps following a local rule by which
the state of a cell is determined as a function of its own state together with
the states of its two neighbors. These devices, despite their simplicity, may
exhibit very complex behavior.
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In order to “understand” these CA one should find some criteria capable
of structuring them into natural classes or hierarchies. In this direction, the
classification of S. Wolfram [11], though heuristical and coarse, corresponds
to the best-known attempt. Wolfram, by “observing” the long-time behavior
of “arbitrary” periodic configurations, distinguishes four CA classes. Some
efforts have been made in order to formalize this classification [5] or, typically
by dynamical systems arguments, to introduce new classification schemes [3,2].
Unfortunately, this last approach yields to some paradoxes: the shift CA, for
instance, appears to be chaotic.

CA may also be seen as computational devices. In fact, it is easy to exhibit a
CA that simulates any Turing machine [6]. In other words, the CA model is
Turing-universal. The question whether the CA model is intrinsic-universal or,
more precisely, whether there exists a CA capable of simulating any other, re-
mained open for some years. Notice that the CA can not be simulated by a Tur-
ing machine because the latter has a unique head which obviously will never
visit the whole tape. J. Albert and K. Culik II exhibited in [1] an intrinsic-
universal CA. The “intrinsic-reducibility” notion induces a preorder on the set
of CA. There are no results concerning (the structure of) this preorder and,
in addition, its study seems to be very difficult: it is based by definition on
the evolution of all the possible configurations (which are uncountable) and it
does not take explicitly into account the CA transition tables. On the other
hand, the “intrinsic simulation” notion is so broad that a pair of CA with
extremely different dynamics could appear to be “equivalent”.

Another approach is to consider CA as algebraic objects. In this context, with
the purpose of endowing the set of CA with an order relation, it would be
sufficient to say that A is a subautomaton of B if the transition table of A is
contained (after a suitable relabeling of the states) in the transition table of B.
This notion is extremely restrictive. In fact, if A is a subautomaton of B then
the space-time diagrams of A are “cell by cell equivalent” to the corresponding
space-time diagrams of B (space-time diagrams are representations in Z? of a
CA evolution from a particular initial configuration). In other words, A and B
may not be associated by the subautomaton relation even with their respective
space-time diagrams being identical after suitable “changes of scale”.

It seems therefore very natural to try to replace the subautomaton relation
by a new one which could take into account potential changes of scale. This
can be done by defining the powers of a CA. More precisely, let us denote by
X' the CA that generates the i-scaled space-time diagram of X and which is
simply obtained by grouping ¢ cells (or states) into blocks and by considering
as transitions the interactions of neighbor blocks. Let us also write A < B
when some power of A is a subautomaton of some power of B or, equivalently,
when the space-time diagrams of A are “block by block equivalent” to the
corresponding space-time diagrams of B. In Section 2 all these definitions are



formally given.

In Section 3 we prove that < is a preorder on CA. We denote by CA* the set
of the canonical equivalence classes induced by <, and we show some basic
properties concerning the order (CA*,<). In particular, we prove that (CA*,<)
admits a global minimum.

In Section 4 we exhibit some equivalence classes located at the bottom of
(CA*,<). These classes, besides being located immediately above the global
minimum, appear to be very natural. In fact, they remind us the first two well-
known Wolfram ones because they capture dynamical properties as nilpotency
or periodicity.

In Section 5 we prove a non-trivial property concerning (CA*,<): the existence
of two incomparable infinite chains having a common upper bound. This upper
bound corresponds to the equivalence class represented by a “synchronization
CA”. Notice that it could be said that the order (CA*,<) “takes into account
the algorithmical non-triviality of this synchronization CA” because it admits
(at least) a pair of infinite chains separating it from the minimum.

Finally, in Section 6 we prove that (CA*,<) has no maximum. Moreover, we
prove that even maximal elements do not exist in (CA*,<). In other words, in a
“grouping sense”, there is no universal CA. This result gives us a lower-bound
in the more general framework of “intrinsic-universality on CA” developed by

Albert and Culik IT [1].

2 Definitions

Formally, a CA is determined by a couple (@, §) where @ is a finite set of states
and ¢ : @* — @Q is a transition function. A configuration of a CA (@Q,4) is a
bi-infinite sequence C € ) , and its global transition function G5 : @ — @
is such that (Gs(C)); = 6(Ci-1,Ci,Cit1). For t € N* = N\ {0} it is defined
recursively G5(C) = Gg(th_l)(C)) with G3(C) =C.

We say that (Q1,d:) is a subautomaton of (Q3,d2), and we write (Q1,d;) C
(Q2,d2), if there exists an injection ¢ : Q1 — Q2 such that for all z,y,z € Q1:

90(51('27y7 z)) = 52(90(33)790(:‘/)7 ‘P(z))‘

When the function ¢ is a bijection we say that (Q1,d:) and (Q2,2) are iso-
morphic and we write (Q1,d1) = (Q2,d2).

For any CA (Q, ¢) the evolution of a finite block of states looks like a light-cone



(i) (i)
Fig. 1. (i) Dependencies diagram representing a block of states evolution as a
light-cone. (ii) Interaction of three blocks.

(see Figure 1-i). This basic fact inspires the notion of the n-block evolution
function 6™ : Q?"*! — @, which is recursively defined for all n € N* as follows:

51(w_1,w0,w1) = J(w—lawﬂawl)a

§"(W_p  wo wy) = " HS(Weny W1, Wony2) 6 (Wnay Wn1,Ws)).

By grouping several states into blocks and by letting interact triplets of blocks
as schematically appears in Figure 1-ii, we generate CA with (exponentially)
more states.

Formally, the n-power of a CA (Q,¢) is the CA (Q,6)" = (Q",d7), where
g € Q" is denoted by (g1 ---¢,) and for all Z,y,7 € Q™

(dg(f,y_),g))i = dn(wi .. -wnyl .. -yi .. -ynzl DRCEEY zi)‘

Let us define the relation < in such a way that it associates two CA when
some power of the first is a subautomaton of some power of the second. More

precisely, for any pair of CA (Q1,d:) and (Q2, J2):

(@Q1,01) < (Q2,6:) <= In,m € N* : (Q1,01)" C (Q2,02)™.

3 An order on CA

Here we show that the relation < is a preorder on CA. We denote by CA*
the set of the canonical equivalence classes induced by <, and we prove some
basic properties concerning the order (CA*,<). In fact, we first show that at
least all the powers of a CA belong to the same equivalence class. Then we
prove that (CA*,<) admits a global minimum consisting of all the isomorphic
CA having a single state. Finally it is shown that every finite family of CA*
admits a maximum obtained by a simple “superposition operation”.



The following lemmas are formulated just for proving Proposition 1 (which
states that < is a preorder on CA).

Lemma 1 Let (Q,6) be a CA. For alln > 1:

5n(w_n e wn) = a(an_l(w_n e wn—2)7
5n_1(w—n—|—1 e wn—1)7

6" (W_niz - wn).

Proof. By induction on n. For n = 2 it is direct by definition. Assuming it
true for n and denoting A = 6"t (w_,,_; -+ - wpy1), it follows:

A= 5“((5(w_n_1,w_n, w—n-l-l) e 5(wn—17wn7 wn+1))
= S(é‘n_l((s(w—n—law—na w—n-l-l) e J(wn—Sa Wn—2,4 wn—l))7
5n_1(5(w—n7 w_n+1,w_n+2) T 5(wn_2, wn—lawn))a
5n_1(5(w—n+17w—n+27w—n+3) e J(wn—lawna wn-l—l)))
= (8" (W -+ Wt )y (W -+ W), 6 (Wi - Wsr)). D

Lemma 2 Let (Q,6) be a CA. For all i,n € N* such that ¢ < n:

Jn(w_n e wn) = Jn_i(di(w_n e w_n+2i) e Ji(wn—Zi e wn))'

Proof. By induction on . For ¢ = 1 it is direct by definition. Assuming it
true for ¢, considering Lemma 1 and denoting A = §*(w_,, - - - w,,), it follows:

A= (Sn_z:((si(’u.)_n e w_n+2i) e (Si(wn_2i. e wn))
= Jn—z—l(é‘z—}—l(w_n e w—n—|—2i—|—2) e 51+1(wn—2i—2 e wn)) U

Lemma 3 Let (Q1,61) C (Q2,02). For all n € N*:

(Q1,61)" C (Q2,6,)".

Proof. Let ¢ : ;1 — @, be a suitable injection. First we have to prove by
induction on n that ¢(67(w_p -+ wy)) = 05(@(w_n) - - - p(wy)). It is direct for
n = 1. Assuming it true for n, and denoting A = (87 (w_p_1 - wWny1)), it
follows:

A= 90(5?(51(w—n—17w—n7w—n+1) e 51(wn—17wn7wn+1)))

= 5?(90(51 (w—n—17w—n7 w—n-}—l)) e 90(51 (wn—lawm wn-}—l)))

= 03 (02(p(w-n—1), p(W-n), P(W_n+1)) - - O2(P(Wn-1), P (wn), P(Wnt1)))
= 07" (p(wno1) -+ p(Wns1)).

)* — (Q2)" such that @(z) =
7€ (Qu)™

Let us consider now the injection ¢ : (Q
(¢p(z1) - -~ ¢(z,)). It follows that for all Z, 7,



(@((61)g(2,9,2)), = (o7 (2 - - - yi - -~ )
=85 (p(z:) - p(ys) - - - p(2:))
= ((62)g(£(2), A(9), #(2)), 0

Lemma 4 Let (Q,6) be a CA. For all n,m € N*:

((@,0)")™ = (Q,8)"™.

Proof. Writing @ € (Q™)™ by (d1 -+ -dm) with @; = (ai1 - ain) € Q™ and be
Q™ by (b1 -bip------ b1 -+ - bmn) with b;; € @, and defining the bijection
e (Q@™)™ — Q™ such that (¢(d));; = (di);, in order to prove the lemma it
suffices to show that the next identity holds for all : < m,j < n, and for all
79,7 € (@)™

because

We finally prove the identity by induction on m. For m = 1 it holds directly.
Let us assume it true for m. It follows:

[(65)™FH(@: - - - Z)]; = [(65)™(05(Zs, Bivr,s Tiva) - - - 65(Zimay Zimn, 2)) 5
= 5nm((57gl(£n £i+17 CEi-l-2))j e (5791(5;—23 Zi—1 2_’;))3)
= 0" (07((73); -+ (Ti2)s) - - 6" ((Zi-2)j - - - (20);))
= (&) (2),). O

Proposition 1 The relation < 1s a preorder on CA.

Proof. The reflexivity holds directly. For the transitivity, let us consider
(Q1,01) < (Q2,02) and (Q2,d2) < (Q3,03). By definition, there exist ny, my,
na, ma € N* such that (Q1,d1)™ C (Q2,82)™ and (Q2,d2) C (Qs,¥d5)™.
By applying Lemma 3 and Lemma 4, together with the transitivity of C, we
conclude that (Qq,d;)™™ C (Qs,d3)™ ™. O



Remark 1 As any other preorder, the relation < induces:

o An equivalence relation ~ on CA, with (Q1,61) ~ (Q2,02) if and only if

(Q1,81) < (Q2,02) and (Q2,02) < (Q1,61)-
o A strict preorder < on CA, with (Q1,01) < (Q2,62) if and only if (Q1,61) <

(Q2752) and (Q1751) 7é (Q2,52)-
e The canonical order on (CA/~) compatible with < and denoted by (CA*,<).

Proposition 2 For any CA (Q,6), all its powers are equivalent. In other
words, for all 1,7 € N*: (Q,8)' ~ (Q,5)’.

Proof. By Lemma 4, ((Q,d)’)' = (Q,6)¥ = ((Q,4)))?. O

Definition 1 Let us denote by SING the family of all the CA having a single

state. More precisely,
SING = {(@,9) : |Q| = 1}.

Proposition 3 SING corresponds to the global minimum of (CA*,<).

Proof. First notice that all the CA of SING are isomorphic. Let ({s},d,) €
SING and let (Q,6) be an arbitrary CA. By the finiteness of @ there exist
G € Qand P € N* with 1 < P < |Q| such that §f(g,---,§) = G, and therefore
({s},d,) C (Q,d)F. Finally notice that if |Q| > 1, then ({s},d,) < (Q,9)

because any power of a singleton CA is also a singleton CA. O

Definition 2 Let (Q1,d1),(Q2,02) be two CA. We define the superposition
(Q,6) = (Q1,01) ® (Q2,62) as follows:

e Q=(Q:U{B})x (Q2:U{B}) with B not being a state of any CA.
o Foral Z=(z1,22),y = (y1,92),Z = (21,22) € Q :

(51(561,3/1,21)73) if(f,ﬁ, 5) € (Ql X {B})3}
5(£7:’77 E) = (3752(5627:‘/2722)) Zf ("Ea:'j’ E) € ({B} X Q2)37
(B, B) otherwise.

Proposition 4 The order (CA*,<) admits local mazima. In other words, for
every finite family {X;}2, C CA* there exists Y € CA* such that X; <Y for
alli € {1,---,n}.

Proof. It suffices to notice that for all (Q1,41) and (Q2,d2), the superposition

(Q,(S) = (Q1,51) ® (Q2,52) satisﬁes (Q1,51) S (Q,(S) and (Q2,52) S (Q,(S)
This fact can be easily proved by considering the injections ¢; : @, — @) with

o(z1) = (z1,B) and @3 : Q2 — Q with ¢(z2) = (B, z3). O



4 The bottom of (CA*,<)

One expects the “simplest” CA to be located at the bottom of (CA*,<). In
this section we give some “evidence” supporting this intuitive expectation.
In fact, we first show that the classes represented by the CA having trivial
transition functions (constant, identity, shift) are all located at the bottom
of (CA*,<). In other words, there is nothing between them and the global
minimum SING. Notice that, in addition, these classes are very natural: they
remind us the first two well-known Wolfram ones [11] because they capture
dynamical properties as nilpotency or periodicity.

Formally, a CA class is said to belong to the bottom of (CA*,<) if there is
no other CA class located strictly between the minimum and itself. In other

words, a class represented by X belongs to the bottom of (CA*,<) if for any
other non-singleton CAY:Y < X = X <Y.

4.1 Nilpotency

The limit set is a fundamental concept of dynamical system theory. It cor-
responds “to the set of all the configurations that can occur after arbitrarily
many computation steps”. For a CA (@, ) we denote its limit set by Q(Q,§).
More precisely, if we define Q° = Q@ and ' = G5(Q°!) for 7 > 1, then
Q(Q,8) = N2, Q. We say that a CA belongs to the class NIL, and we call it

nilpotent, if its limit set is a singleton. In other words,

NIL ={(@,9) : (1@ > 1) A (1@, )| = 1)}

Obviously, when the limit set is a singleton it corresponds to an homogeneous
configuration. In [4] it is proved that when nilpotency holds then this config-
uration is reached from any other one in a finite and fixed number of steps.
More precisely, if we denote 3o = (- -- 808080 - - *):

NIL = {(Q,9): (IQ| > 1) A (3so € Q,n € N*)(VC € @ )(G5(C) = 30)}

We introduce now the simplest nilpotent CA: those reaching the homogeneous
configuration in one step. More precisely:

Definition 3 Let the family of CA {(Sn,0,)}n>1 be such that, for alln > 1:
e 5,=40,---,n—1}.

o Vz,y,z€ S, :0,(z,y,2z) =0.



Lemma 5 For all n > 1: (S2,02) ~ (S,,0,).

Proof. First notice that if p < g then 0, = 0, ‘Sp, and therefore (S,,0,) C

(S4,0,)- Let n > 1 and let 7 € N* be such that n < 2%. It follows that
(Sn,0,) C (S32,05)" because (S2,02)" = (Syn,0,s). O

Lemma 6 If (Q,d) < (S2,02) then (Q,6) € NIL or |Q| = 1.

Proof. If (Q,8) < (S3,0;) then Ji,j € N* : (Q,d)* C (S3,02) . It follows:

34,5 € N][(Q, )" € (823, 04)].
— [Fi € N, F € Qi|[VP1, T2 T € QF[05(21, T2, T3) = 7).
= [Ji € N*, 80 € Q][VC € Q¥+][(6() = s0].
= (@,0) e NILV |Q|=1.

O

Proposition 5 The equivalence class represented by (S2,02) corresponds to

the family of nilpotent CA. In other words, for any CA (Q,0):

(@Q,6) ~ (52,0;) < (Q,d) € NIL.
Proof. If (Q,6) € NIL then, by definition, there exist n € N* and sy €
Q such that for all @ € Q**! : §*(¢) = so. It follows that (Q,d)” =
(Siop»,0jg») with |Q|™ > 1 and therefore, by Lemma 5, (Q,d) ~ (S2,02). The

other implication corresponds to Lemma 6 and to the fact that if (S3,0,) <
(Q,0) then |Q| > 1. O

Proposition 6 The equivalence class NIL belongs to the bottom of (CA*,<).
In other words, for any non-singleton CA (Q,96):

(Q75) S (52702) - (52702) S (Q,J)

Proof. Let (Q,d) < (S3,02) with |Q| > 1. By Lemma 6, (Q,d) € NIL, and
therefore (Q,d) ~ (S,,02). O

Corollary 1 Given a CA (Q,9), it is undecidable whether (Q,4) < (S2,02).

Proof. By the fact that the nilpotency problem is undecidable [7]. O



4.2 Periodicity and shaft-like behavior

Now some other simple global properties concerning cyclic behavior are con-
sidered. First we say that a CA belongs to the class PER, and we call it
periodic, if every configuration belongs to a cycle. More precisely,

PER=1{(Q,8): (IQ| > ) A(VC € Q ,Ine N : GF(C) = C)}.

On the other hand we introduce the Rsgyrrr and Lsgrpr classes. In this case,
for every configuration there exists an n € N* for which the configuration
reappears n cells shifted after n time steps. In other words,

Rsurrr = {(Q,6) : (|Q| > 1) A (VC € @ ,3n € N*: ((G5)"(C)): = Ci—n)}-
Lsarer = {(@,9) : (1Q] > 1) A (V€ € Q ,3n € N* : ((G5)"(C)); = Cisn)}-

As in the nilpotency case, for these classes the length of the cycles does not
depend on the considered configurations. This result is stated in the next
lemma:

Lemma 7 The following holds:

PER ={(Q,0): (|Q| >1)A(Ine N VCe @ :G}(C)=C)}.
Rsprrr = {(Q,6) : (|Q] > YA (B e N,VC € @ : ((G5)"(C))i = Ci—n)}-
LSHIFT = {(Q,(S) : (|Q| > 1) A (37’1, € N*,VC € Q : ((GJ) ))

Proof. Let (Q,0) € PER. Let us consider any configuration C* in which all
the words over @) appear (it suffices to construct it as a suitable concatenation).
Denoting the period of the cycle to which C* belongs by n*, it follows that:

V? = (c—n*7"'7007"',cn*) c Q2n*+1 :an*(?) = ¢,

and therefore any other configuration C € () is n*-periodic. For the Rggrrr
and the Lggrpr classes the proof is exactly the same. O

Let us introduce now the simplest periodic and shift-like CA: those having
unitary length cycles. More precisely:

Definition 4 Let the families of CA (Sn, 1), (Sn,0n), and (Sn,0,') be such
that, for all n > 1:

10



e 5, =40,---,n—1}.
o Ve,y,z€ S,

c In(z,y,2) = .

- on(z,y,2) = 2.

- ol (z,y,2) = 2.

It follows the same as for the nilpotency case. In fact, the proofs of the next two
propositions are completely analogous to those of Proposition 5 and Proposi-
tion 6.

Proposition 7 The equivalence classes represented by (S2,I3), (Sa,02), and
(S3,05 ") correspond, respectively, to the families of periodic, right shift-like,
and left shift-like CA. In other words, for any CA (Q,9):
(Q,8) ~ (52, ) <= (Q,8) € PER.
(Q,6) ~ (S2,02) < (Q,9) € Rsmirr-
(Q,8) ~ (S2,03") <= (Q,9) € Lsnurrr.

Proposition 8 The equivalence classes NIL, Rsgirr, and Lsgrrr belong to
the bottom of (CA*,<). In other words, for any non-singleton CA (Q,6):

(Q,5) < (S2,I2) = (S27I2) 75)'
(Q,6) < (S2,02) = (S2,0) ,6).
(Q,(S) S (5270'2_1) — (52702_1) S (Q,J)

<(Q
<(Q
Corollary 2 The classes Rsgrrr, Lsgirr, NIL, and PER are pairwise in-

comparable.

Proof. Consider any non (spatially) periodic configuration and notice that
its behavior could never be simultaneously of two types. O

5 Infinite bounded chains

Here we prove a non-trivial property concerning (CA*,<): the existence of
two incomparable infinite chains having a common upper bound. This upper
bound corresponds to the equivalence class represented by a “synchronization

11



CA” denoted by (Q,D). More precisely, (Q,D) is a suitable composition of
the CA that solves a slightly modified version of the well-known firing-squad
problem [10] with another one that simply transmits signals. Notice that it
could be said that the order (CA*,<) “takes into account the algorithmical
non-triviality of (Q,D)” because it admits (at least) a pair of infinite chains
separating (Q,D) from the minimum.

Let {(Sn,7n) }n>1 and {(Sn, fn) }n>1 be two CA families defined as follows:
e S, ={0,---,n —1}.

z ifz= y=2z,
° n(Z zZ) = .
N (@, Y, 2) {0 otherwise.

® pn(z,y,2) = min{z,y, z}.

Before proving that the previous families are incomparable and infinite chains,
notice that there exists a pair of points belonging to different families which
are comparable. In fact, the initial points (S3,72) and (S3, u2) are isomorphic.
On the other hand, they are located above the NIL class as it is proved in
the next proposition.

Proposition 9 For all (QniL,én1L) € NIL:

(Qn1r,dniz) < (S2,72),
(@nr1z,dn1L) < (S2,12).

Proof. Let (Qnrz,dn1z) € NIL.First (S2,72) £ (Qniz,dn1z) because (S2,12)
is not nilpotent (see Lemma 6). On the other hand, notice that (S3,05) C
(S2,m2)* because it suffices to consider ¢ : Sy — (S3)? such that ¢(z) =
(0z). O

Lemma 8 Letn > 1. For all 1 € N*:

n = H? € (Sn)z : (nn)zg(?aﬁaﬁ) = ?H
= H? € (Sn)z : (Mn)§(77777) = 7}|

Proof. First, for all z € S,,:

12



Let & = (z;---2;) € (Sn)" be such that 3k € {1,---,i} with z; # zpi1.
Without loss of generality, let us assume zp > zgy;. It follows:

((nn)zg(i)’f’f))k =0 7& Lk

((Mn)zg(i)’f’f))k < ZTpg1 < . O
Proposition 10 For all n > 1:

(Snann) < (Sn+1777n+1)7
(Snn“n) < (Sn+17Hn+1)'

Proof. First (S,,7.) < (Sn+1,7n+1) because 9,41 |s, = nn. Let us suppose
that there exist 7,7 € N* such that (Sni1,7m41)" C (Sny7n)?. Let ¢ 1 (Spi1)’ —
(S.)? be a suitable injection. It follows that, if @ € (Spy1) is such that
(Tln+1)ig(77777) = @ then (Tln)Jg(SO(?)#(?),%D(?)) = 90(?) and we con-
tradict Lemma 8. For (S,,tn) < (Snt1;pns1) the argument is exactly the
same. O

Lemma 9 Leti,n € N* withn > 1 and let @ = (ay---a;) € (S,)*. It holds:

i 2 (al"'al) ifar=ay =+ = a,;,
(1)@, d, d) = {(00) otherwise.

(pn)5(d,d, @) = (a*---a*), where a* = min{ay,---,a;}.

Proof. It suffices to notice that, for all # = (z_;---zo---z;) € (5,)**:

(nn)i(m—i"'mo"'mi)#O<:>m—i:"‘:m0:"‘:$i7é0,

(Iuln)z(;{;_i ceegttt ;131) = IIliIl{.’B_i, cee Loyttt 7'731'}- O

Proposition 11 For all n > 2,m > 2: (Sm, pm) £ (Sns7n)-

Proof. Let us suppose that there exist 7,7 € N* such that (S,.,um)" C
(Sny7.)? and let us denote by ¢ : (S,)" — (S,)? a suitable injection. It
follows that:

Ve € Sy, Jp. € S, such that p(z---2) = (pz -+ z).

13



In fact,
ple2) = pl(anli(e - 2,2 2,2--2))
J

m)g(p(z---z),p(z---2),p(z---z))
©z -+ @z) (by Lemma 9).

Let © € S,, be such that 0 <z <m — 1 and p(z---z) # (0---0). It follows:

plo2) = pl(m)y(m — 1o m — Lz ozym— 1o — 1)

nn)Jg(‘Pm—l CPm 1Pz Py Pl Pmo1)
0---0).

This is a contradiction. O

Proposition 12 For all n > 2,m > 2: (S,,1,) £ (S, pom)-

Proof. Let us suppose that there exist ¢, j € N* such that (S,,7,)° C (S, ftm )’
and let us denote by ¢ : (S5,) — (S, )’ a suitable injection. As in the proof of
Proposition 11, we can show that:

Ve € S,, 3¢, € S, such that p(z---2) = (pz -+ z).

Let z,y € S, be such that ¢, > ¢, > 0 and y # 0. It follows:

e(0---0) = p((na)i(z -2,y -y, z---z))
= ()G (Pa* Par Py Pys P+ Pa)
= (@y @)
= o(y--y).

This is a contradiction. O

In order to obtain an upper bound for the two previously introduced chains
we are going to compose a pair of CA. One of them is related to the classical
firing-squad problem introduced in [10] and which consists in designing a CA
capable to synchronize “as soon as possible” an array of cells of arbitrary size.
In Lemma 10 a result that appears in [9] concerning a slightly modified version
of the original problem known as two-ends firing-squad is formally stated:

14



Gl %D B G |G| DD Gr|G| D D|Gr

Fig. 2. Two-ends firing squad.

Lemma 10 [9] There exists a CA (Qrs,drs) such that {Gi,G.,q} C Qrs
and which satisfies for all n € N* the following:

L4 (5FS)Z+2(G1(J0 T qOGT7 quo Tt q0Gr7 GlQo T qOGT) = (quo T qOGT)'

o For all substring T of the triple concatenation

(G190 - - 900G-Gig0 - - - 90G-Gigo * - - 9G.) € (QFS)3(n+2)
such that |?| =2k +1 with1 <k < (n+2), it holds:

(0rs)*(T) # qo-

In Figure 2 appears schematically the case n +2 = 4. The CA to be composed
with (Qrs, drs) is introduced in the next definition. Its cells simply transmit
the signals (or states) coming from its left (resp. right) neighbor to its right
(resp. left) neighbor keeping only its own information. More precisely,

oy . signal c¢signaly -
Definition 5 Let Q be an arbitrary set of states. The CA (S55°"%,05°"") is
defined as follows:

o S5 = Q°, and the states of S are denoted by s = (s13.s,).

o Vz,y,z € Sggnal : 53gnal(m,y,z) = (Z1Yczr).

The composed CA is almost the “superposition” of the two previously in-
troduced ones (with the set of signals ¢ = {0,1}). The exception is done
at the last step of the firing-squad period. More precisely, the only 1 signals
not destroyed (transformed into 0) are those arriving simultaneously to a cell.
Formally:

Definition 6 Let (Q,D) be the CA such that Q = Qrs X Sfé“”ffl. We denote
D((z1,22), (y1,Y2), (21,22)) by Dyy .. We define Dy, . as follows:

. 5FS(331,y1,21) = Qo
(5F5(w17y13z1)7000) Zf sional
Da:,y,z = and 5{0?1} (ZBz,yz,Zz) # (]_]_]_)

signal

(6rs(z1,91,21), 5{0’1} (z2,ya, 22)) otherwise.

15



G| % % &
000 | .000.| 111 | 000

G|lwlw|a|la| v | c|la[%v %G
000 | 000 | 111 | 00O | OO0 | OO0 | 111 | OO0 | OOO | OOO | 111 | OOO

G| % % |G
000 |.000. | .000.| 000

Glala % % G

G| % % G|[G| % | ¢
111 | 000 ] 000 | 111 | 00O | 00O

000 | 000 | 111 | 00O | 00O | 000

Fig. 3. “Simulating” by (Q, D)* the transitions of (Ss, 73) for (2,2,2) and (2,2,1).

Proposition 13 For all n > 1: (S,,n,) < (@, D).

Proof. Let n € N*. (S,,n,) C (Q,D)"**! by the injection ¢ : S, — Q™! that
follows:

©(0) = ((G1,000), (g0, 000), - - -, (g0, 000), (G,, 000)),
((Gla 000)7 (QOa 000)7 Tty (QOa 000)7 (QOa 111)’ (QO7000)7 T (Gra 000))

z with 0<z<n—1

p(z)

In fact, as it is shown in Figure 3,

p(2) if p(z) = ¢(y) = ¢(2),
©(0) otherwise.

Dt (p(z), 0(y), ¢(2)) = {

= ¢ (2,9, 2))-

On the other hand (Q,D) £ (S.,7,) because (Spi1;Mnt1) £ (Snsmn). O
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Proposition 14 For all n > 1: (S,, 1s) < (@, D).

Proof. Let n € N*. (S,,7.) C (Q,D)"*! by the injection ¢ : S, — Q™!
defined as follows:

©(0) = ((G1,000), (g0, 000), - - - , (g0, 000), (G,, 000)),

‘P(m) = (Gl7 000)7 (QOa 111)7 Tt (QOa 111)7 (QO7000)7 T (q07 000)7 (G7’7 000))

z with 0<z<n—1

In fact, as for n,:

'DZ+1((,0(€B),(,0(y),cp(z)) = @(min{w7y7z}) = @(:un{wayaz})'

On the other hand (Q,D) £ (Sn,pn) because (Spi1, fint1) £ (Snyfin). O

6 Infinite unbounded chains

In this section we prove that (CA*,<) has no maximum. Moreover, we prove
that even maximal elements do not exist in (CA*,<). Therefore, for any CA
X, the set of all the subautomata of all the powers of X will never cover all the
CA classes. In other words, in a “grouping sense”, there is no universal CA.
As it is explained at the end of the section, this result gives us a lower-bound
in the more general framework of “intrinsic-universality on CA” developed by
Albert and Culik II [1]. The proof is based on the existence of an unbounded
infinite chain obtained after “processing” the next one.

Definition 7 {(S,,A,)}n>1 is the family of CA such that, for each n > 1:

i Sn:{07"'7n_1}7

z ife=z,

y ifz#z.

Notice that the first element of the previous family is located above the class
NIL. In fact, if we consider the CA (S2,0;) € NIL and (S2,p2) introduced
in previous chapters, where 0z(z,y,z) = 0 and ps(z,y,z) = min{z,y, 2z}, it
follows:

o Ay(z,y,2) = {

Proposition 15 (53,02) < (S2, #2) < (S2,A2).

17
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0101oo||010001| |0001o1| |010101

Fig. 4. Embedding (S2, g2) into (S2, A2)%.

Proof. In Proposition 9 it was proved that (S2,02) < (S2,u2). On the other
hand, as it is shown in Figure 4, it is easy to check that (Sy, us) C (S, A2)* by
the injection ¢ : Sy — (S2)? such that p(z) = (0z). Finally, let us suppose that
there exist 7,7 € N* such that (S3,Ay)* C (S, u2)’. By Lemma 3, (Sa, Ay)%* C
(S, p2)%. By Lemma 8,

{Z € (S2)% : (m)¥ (T, 7,7) = T} =2
However,

{7 € (52)" : ()5 (7,7, %) = T} > 4,
because for all z,y € Ss:

(Az)?(wy---wy,wy- cezy,zy---zy) = (zY- - - TY). O

The following is the key result of the present chapter. It says that “(S,,A,)
is never a subautomaton of any power of any other CA with less states”.
Formally:

Proposition 16 Let (Q,d) be a CA and let n € N* . It holds:
Q] <n=Vie N :(5,A,) Z(Q,9).
Proof. Let (Q,d) be a CA and let n € N* with |@| < n. Suppose that there

exists 7 € N* such that (S,,A,) C (Q,d)". Then, by definition, there exists an
injection ¢ : S, — Q° such that:

Va,y,z € St o(An(z,y,2)) = 65((2),0(y), 2(2)).

Let i be the smallest index of Q' for which there exist at least two elements
of ¢(S,) having different values (see Figure 5). Formally:

to = min{k € N* : I(z1, -+, 2;), (y1,- -, ¥i) € 9(Sn) such that z; # yi}.

18
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EE -

Fig. 5. Cell 7y and the information it may access.

Notice that ig € {1,---1} is well defined because |S,| > 1. It follows:

V?,? € (,D(Sn) ' T 7& Z = Z;, 75 Zip-

In fact, suppose that there exist @, 7 € ¢(S,) with @ # 2 such that
z;, = z;,. By construction of iq there always exists 7 € ¢(S,) such that
z;, # Yi,- This fact contradicts the following one:

Lig = (53(?777?))10 = 52i+1($io7"'7wi7y1"'7yi7$17"'7$io)
= 52i+1($i07“‘7$i7y1"‘7yi7217"‘7zi0)

= (5&(?777?))10 = Yip-

Finally it follows that 8 : S, — @ with 8(z) = (¢(z))s,
therefore n < |@Q|. This is a contradiction and therefore the proposition is
concluded. O

is an injection and

In order to conclude that (CA*,<) admits no maximum we need to prove
a lemma that says that every CA is contained in all the powers of a suit-
able composition of itself with the CA that transmits signals introduced in
Definition 5. More precisely,

Lemma 11 For any CA (Q,9) there exists a “normalized version” denoted

by (Q,8)" = (Q*,8") satisfying, for all i € N*: (Q,5) C (Q*,6").

Proof. Let us denote by B a state not belonging to any CA. Let (Q,4) be a
CA. We define Q* = Seignal | and for all z,y,z € Q*:

{Qu{B}}

(5('73173/67zr)75($17y67zr)75(3317ycaz7')) if Tl Yy 2r € Qa

5323’3?13}}(”% y,2) otherwise.

6" (z,y,2) = {
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gg%; BBB | BBB

xBB | ByB | BBz | yBB | BzB

xBB | BBy | ByB | yBB | BBz | BB | zBB

xxx | BBB | BBB | yyy | BBB | BBB zzz | BBB | BBB

Fig. 6. Embedding (Q, ) into (Q*, §*)* for i = 3.
As it appears in Figure 6, for any i € N*, (Q,d) C (Q*,*)! by the injection
¢ :Q — (Q*)* defined as follows:

¢(2) = ((ea2),(BBB), - (BBB)). O

Proposition 17 Let (Q,d) be a CA and let n € N*. It holds:

@ <n = (5],47) £ (@,9)

Proof. Let (Q,6) be a CA and let n € N* be such that |@| < n. Suppose
that there exist 7,7 € N* such that:

(SnsAL) C (Q,0).

By Lemma 11, (S,,A,) C (Q,4)’, and we contradict Proposition 16. O

Corollary 3 (CA*,<) has no mazimum.

Proposition 18 For all n € N*: (53, A7) < (Sf41)110 Alngiyes1)-

Proof. First (5;,A7) < ({410 Alntiyi4
A*

n+1)3+
(nt1)241 |55 = AX. Let us suppose that (S(*n-|-1)3-|—1aAzn+1)3+1) < (S5, A7).

Considering that |S}| = (n + 1)3, we contradict Proposition 17. O

) because 53 C S , and

Proposition 19 For every CA (Q,d) there ezists another one (Q,S) such
that (@,5) < (Q,9).

Proof. It suffices to simply consider the superposition (Q,S) = (@,0) ®
(Sig+1:Algj41)- By Proposition 4, (Q,d) < (@,d). On the other hand, if

(Q,S) <(Q,9) then (S|*Q|_|_1,A|*Q|+1) <(@,9), which is a contradiction. O
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Fig. 7. The notion of intrinsic universality.

Corollary 4 There are no mazimal elements in (CA*,<).

Remark 2 The concept of intrinsic or self-referenced simulation on CA was
introduced in [1]. It simply means that we “simulate directly a CA with-
out passing through Turing machines”. More precisely, as it 1s schematically
shown in Figure 7, a CA (Qu,dy) is said to be intrinsic-universal if any con-
figuration of an arbitrary CA (Q,8) can be encoded into a configuration of
(Qu,du) so that each cell of the simulated CA is encoded as a block of cells
of (Qu,du) of size Lgs). Each step of (Q,6) is simulated by T(qs) steps of
(Qu,du). In [8] appears an intrinsic universal CA working in quasi-linear time
but restricted to totalistic transitions (more precisely: T = O(|Q|log (3]|Q])
and L = log (3|Q])). Our result means that, independently of the codification

P Q — (QU)L, we have T(q5) > L(qs) (asymptotically).

7 Concluding remarks

Throughout this work we have many times suggested the possibility of devel-
oping a complexity notion on CA based on the structure of (CA*,<). In fact,
for any CA X, we have some evidence supporting the choice of the “longest”
chain separating X from the minimum as a natural measure of its “complex-
ity”. In fact,

e The simplest CA analyzed here (nilpotents, shift-like, periodics) have all
“minimal complexity”.

e The only algorithmically non-trivial CA which appeared in this work (a
modified version of the one that solves the firing-squad problem) has “infi-
nite complexity”.

Those CA separated from the minimum by an infinite chain could be classified
in hierarchies by considering “the nature of the separating chain”. Therefore,
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the first questions concerning the (CA*,<) structure arise:

o Is it a lattice?
e Does it admit dense chains?
e Does it admit ordinals?

A deeper understanding of the (CA*,<) structure should “start from the bot-
tom”. In other words, we should try to characterize those CA located im-
mediately above the minimum and determine, for instance, whether all the
“self-similar” CA belong to this category.

The non-existence of a maximum in (CA*,<) may be interpreted in the “intrin-
sic universality” framework as the impossibility of “simulating in real time”.
Improvements in our lower-bound could be done in the future. Also in the
calculability domain, the following question seems very natural:

e In which part of (CA*,<) is located “the smallest” Turing-universal CA?

Finally, we would like to point out that our results can be easily generalized
to CA of any dimension.
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