
Almost optimal decentralized routing in
long-range contact networks

Emmanuelle Lebhar? and Nicolas Schabanel??
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Abstract. In order to explain the ability of individuals to find short
paths to route messages to an unknown destination, based only on their
own local view of a social network (the small world phenomenon), Klein-
berg (2000) proposed a network model based on a d-dimensional lat-
tice of size n augmented with k long range directed links per node.
Individuals behavior is modeled by a greedy algorithm that forwards
the message to the neighbor of the current holder, which is the closest
to the destination. This algorithm computes paths of expected length
Θ(log2 n/k) between any pair of nodes. Other topologies have been pro-
posed later on to improve greedy algorithm performance. But, Aspnes
et al. (2002) shows that for a wide class of long range link distributions,
the expected length of the path computed by this algorithm is always
Ω

`
log2 n/(k2 log log n)

´
.

We design and analyze a new decentralized routing algorithm, in
which nodes consult their neighbors near by, before deciding to whom
forward the message. Our algorithm uses similar amount of computa-
tional resources as Kleinberg’s greedy algorithm: it is easy to imple-
ment, visits O

`
log2 n/ log2(1 + k)

´
nodes on expectation and requires

only Θ(log2 n/ log(1 + k)) bits of memory – note that [1] shows that
any decentralized algorithm visits at least Ω(log2 n/k) on expectation.
Our algorithm computes however an almost optimal path of expected
length O

`
log n(log log n)2/ log2(1 + k)

´
, between any pair of nodes. Our

algorithm might fit better some human social behaviors (such as web
browsing) and may also have successful applications to peer-to-peer net-
works where the length of the path along which the files are downloaded,
is a critical parameter of the network performance.

1 Introduction

The small world phenomenon. Since the experiment of Milgram in 1967 [2],
showing that people are able to route very efficiently messages to an unknown
destination through their own local acquaintances (even if only 25% of the mes-
sages actually arrived), several models [3,4] have been designed to capture this
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phenomenon. Numerous real graphs (such as the co-author graph, the web graph,
peer-to-peer networks...) share similar properties: a very small diameter (typi-
cally poly-logarithmic in the size of the network) and the existence of short paths
between random nodes, that can be found very efficiently, based only on the local
view of the network.

Models for the small world phenomenon. Models for the small world phenomenon
have recently received a renew of interest for their potential application to peer-
to-peer networks [5,6]. Watts and Strogatz observed in [7] that most of the small
world graphs are locally strongly interconnected and proposed a random rewiring
model that yields a small diameter and strong local interconnections (see also
[8,9]). But these models fail to capture the specific nature of a small world. In
[10], Kleinberg demonstrated that, for these models, there does not exist any
decentralized algorithm (i.e., using only local information) that can find poly-
logarithmic length paths, even when the diameter is poly-logarithmic. He then
introduced a new model, that in its most general form is a d-dimensional toric
lattice augmented with k random directed links per node. The d-dimensional
lattice represents the underlying geographic (or local) relationships between the
individuals. Each node u is also the origin of k ≤ log n directed links point-
ing to its k long range contacts v1, . . . ,vk, chosen randomly and independently
according to the s-harmonic distribution, i.e., with probability proportional to
1/δ(u,v)s, where δ(u,v) is the lattice (Manhattan) distance between u and v.
[10,11] demonstrate that when s 6= d, no decentralized algorithm can find a poly-
logarithmic length path in the d-dimensional network. For s = d, a simple greedy
algorithm is proposed, that forwards the message to the closest1 neighbor of the
current holder to the target until it reaches its destination. When s = d, this
algorithm computes a path of expected length Θ(log2 n/k), between any random
pair of nodes. This result demonstrates that there is more to the small world
effect than simply the existence of short paths, and that the algorithmic nature
of the experiment has to be considered. Variants of this graph, with undirected
long range links, based on edge percolation, have been studied in [12,13,1].

Several topologies (e.g., [14,15]) have been proposed to improve the greedy
algorithm performances, in the perspective of applications to peer-to-peer net-
works. [6] demonstrates that for a wide class of long range links distributions
on the ring (including the one mentioned above), Kleinberg’s greedy algorithm
computes path of expected length Ω

(
log2 n/(k log log n)

)
(if it is not allowed to

“jump over” the target, and Ω
(
log2 n/(k2 log log n)

)
otherwise). In [1,16], the

greedy router is aware of the long range contacts of the local neighbors closeby (at
lattice distance ≤ 1 in [1] and ≤ log1/d n in [16]) before forwarding the message:
the expected length of the computed path is improved to O

(
log2 n/(k log k)

)
in

[1] (the network in [1] is also slightly different), and Θ(log1+1/d n) in [16].

Our contribution. In this paper, we design and analyze a new decentralized
routing algorithm on the d-dimensional Kleinberg’s small world model, that
1 According to the lattice distance.



computes a path of expected length O
(
log n · (log log n)2/ log2(1 + k)

)
between

any pair of nodes. Our algorithm visits O
(
(log n/ log(1 + k))2

)
nodes on ex-

pectation to compute this path. The network load induced by the computation
of the path and the latency2 of our protocol is then very close to Kleinberg’s
greedy algorithm. Note that [1] proves that any decentralized routing algorithm
visits at least Ω(log2 n/k) nodes. Our algorithm requires small resources as well:
it only requires O(log2 n/ log(1 + k)) bits of memory to store the addresses of
O(log n/ log(1 + k)) nodes (for instance, in the message header); and it is fairly
easy to implement. Note also that it is not based on searching for the highest de-
gree nodes, and thus avoids overloading them. Applied to peer-to-peer networks,
where the path length is a critical factor of performance (since downloaded files
are often large), our algorithm could possibly reduce the load of the network.

2 Model and main results

The network. We consider the d-dimensional variant of the small world network
model with k ≤ log n long-range links per node, introduced by Kleinberg in [10].
The network is an augmented d-dimensional toric lattice {−n, . . . , 0, . . . , n}d of
(2n+1)d nodes. In addition to its 2d neighbors in the lattice (its local contacts),
each node u is the origin of k directed links, each of them pointing towards a node
vj , 1 ≤ j ≤ k, (u’s j-th long-range contact), chosen independently according to
the d-harmonic distribution, i.e., with a probability proportional to 1/δ(u,v)d,
where δ(u,v) is the distance between u and v on the toric lattice.

In all the following, log stands for the logarithm base 2; ln denotes the natural
logarithm, base e, and Hn =

∑n
i=1 1/i. Note that ln (n + 1) < Hn < lnn + 1.

Decentralized routing algorithms. We study algorithms that compute a path
to transmit a message or a file from a source to a target, along the local and
(directed) long range links of the network. Following Kleinberg’s definition, such
an algorithm is decentralized if it navigates through the network using only local
information to compute the path. In particular, it has the knowledge 1) of the
underlying lattice structure (the d-dimensional torus), 2) of the coordinates of
the target in the lattice, and 3) of the nodes it has previously visited as well as
their long-range contacts. But, crucially, 4) it can only visit nodes that are local
or long-range contacts of previously visited nodes, and 5) does not know the
long-range contacts of any node that has not yet been visited. However, 6) the
algorithm (but not the path it computes) is authorized to travel backwards along
any directed links it has already followed. As Kleinberg pointed out in [17], this is
a crucial component of human ability to find short paths: one can interpret point
6) as a web user pushing the back button, or an individual returning the letter
to its previous holder (who wrote his address on the envelope before sending it).

The following theorem is the main result of this paper.

2 defined as the time to compute the path.



Theorem 1. For any dimension d and k ≤ log n, there is a decentralized
routing algorithm A using Θ(log2 n/ log(1 + k)) bits of memory such that, for
any pair of nodes (s, t), A computes a path from s to t of expected length
O

(
log n · (log log n/ log(1 + k))2

)
, and visits O

(
(log n/ log(1 + k))2

)
nodes on

expectation to compute this path.

Our algorithm computes an almost optimal path in the following sense:
the expected path length is O(log n(log log n/ log(1 + k))2), while the diam-
eter of Kleinberg’s network is lower bounded by Ω(log n/ log(1 + k)) (every
node has out-degree 2d + k). The expected path length is thus optimal up to
a (log log n)2/ log(1 + k) factor. It shows in particular that Kleinberg’s greedy
algorithm does not compute an optimal path, nor a constant factor approxima-
tion.

We present below the depth-first search implementation of our algorithm
which is the most time-efficient. We will however analyze in the following sections
an equivalent (but less time-efficient) breadth-first search implementation that
improves the readability of the proofs. In order to describe the algorithm, we
introduce the following definitions.

Definition 2. We say that a link (local or long-range) from a node u to a node
v is good if v is strictly closer to the target than u, according to the lattice
distance. We say then that v is a good contact (local or long-range) of u.

A node v is said to be h good links away from u, if there is a path of length
≤ h from u to v only composed of good links; v is h local good links away from
u if this path is only composed of good local links.

Every node u (but the target) is the origin of at least one good (local) link
(and in fact, up to d local good links depending on the relative position of u to
the target) and, with some probability, of up to k other good (long-range) links.
We now describe the algorithm with the parameters set for the one-dimensional
network (the parameters for the d-dimensional network are given Section 4 - the
algorithm remains unchanged).

The algorithm (depth-first search implementation - one-dimensional network).
Let s and t be respectively the source and the target. Let us assume we are
given three functions hmax(x), bmax(x) and g(x) whose values will be given in
Section 3 and 4, for d = 1 and d ≥ 2 respectively. Let x the current holder of
the message and π the current path from s to x.
While δ(x, t) > k log2 n: explore in depth-first order the nodes hmax(x) good
links away from x, record in a set F all the good long range contacts visited,
but skip in the search all the long range contacts that are at lattice distance
< hmax(x) + g(x) from any node of the current set F . The depth-first search
also stops as soon as |F | = bmax(x). Each time a node, z, exactly hmax(x) good
links away from x is reached, read the addresses of the long range contacts of the
nodes g(x) good local links away from z and record in a variable y the closest
node to the target (according to the lattice distance) among the visited nodes
and their contacts. At the end of the depth-first exploration, route the message



from x to y along the links followed from x to y during the exploration, and
extend the path π to y accordingly.
Once δ(x, t) ≤ k log2 n: apply Kleinberg’s greedy algorithm, i.e., forward the
message to the closest contact of x to the target t, and extend the path π
accordingly, until the target is reached.

Figure 1 illustrates the structure visited during each exploration step: straight
lines represent good local links and arrows represent good long range links; the
nodes in F are represented by white circles, each of them starts a new chain of
≤ hmax(x) + g(x) local links towards the target. The structure is composed of
a (partial) (1 + k)-ary tree of height hmax(x) extended by chains of local links
of length g(x) attached to its leaves. The chains of local links, rooted on the
nodes in F , are guaranteed not to overlap, since only good long range contacts
far enough from any already present node in F are considered. The tree is drawn
on the plane to highlight the tree structure but is in fact mapped on the ring. At
the end of the exploration step, the path is extended from x to the closest3 node
y to the target, among the explored nodes and their contacts. A new exploration
step then begins from y.

Source

π Targety
x

hmax(x) g(x)

Fig. 1. Extension of the path π (in bold) at the end of an exploration step.

The following sections analyze this algorithm in detail and demonstrate the
theorem: we start with the one-dimensional network (Section 3) and show in
Section 4 how the results on the one-dimensional network extend to arbitrary
d-dimensional networks.

3 One-dimensional network

In dimension 1, the network is an augmented ring of 2n + 1 nodes, numbered
from −n to n. In addition to its two neighbors in the ring (its local contacts),
each node u is the origin of k (≤ log n) extra directed links, each of them
pointing towards a node vj (u’s j-th long-range contact), chosen independently
according to the 1-harmonic distribution, i.e., with probability 1/(2Hnδ(u,v)),
where Hn =

∑n
i=1 1/i. We define a chain as a set of locally neighboring nodes,

i.e., a path of local links.
3 According to the lattice distance.



In order to simplify the analysis of the algorithm, we use a breadth-first search
implementation of the exploration step in our algorithm (below). The analysis
consists in the study of the explored tree structure: basically, that this tree is
large enough to guarantee the existence of a contact whose lattice distance to the
target t is log(1+k)

2k times x’s distance to t. Since this analysis is independent of
the way the tree is searched, it will apply to the depth-first search implementation
as well.

Routing algorithm (breadth-first search implementation)

Let hmax(x) = (log log x− log log log n)/ log(1 + kHx/(6Hn)),
(Note that hmax(x) = O(log n log log x/(log(1 + k) log x)))

bmax(x) = log x/ log log n,
and g(x) = log n log log n/(log(1 + k) log x).

Input: the source s and the target t.

1. Initialization: x← s.

2. While δ(x, t) > k log2 n, do:

Exploration step:
x← δ(x, t), A0 ← {x}, B0 ← {x}, F ← {x}, h← 0.
While h < hmax(x) and |Bh| < bmax(x):

Bh+1 ← ∅.
for each u ∈ Bh do

Bh+1 ← the good local neighbors of u.
for each good long range contact v of u do

if ∀w ∈ F, δ(v,w) ≥ hmax(x) + g(x) then
F ← F ∪ {v}, Bh+1 ← Bh+1 ∪ {v}.

Ah+1 ← Ah ∪Bh+1.
h++.

if |Bh| > bmax(x) then
remove the (|Bh| − bmax(x)) last inserted nodes from Bh and F .

hstop ← h, A← Ahstop−1 ∪Bhstop . (Note that |Bhstop | ≤ bmax(x))

C ←
⋃

b∈Bhstop
Cb, where Cb is the set of the nodes that are ≤ g(x)

local good links away from b.

Message forward step:
x← the closest node to the target t, according to the lattice distance,

among the local or long-range contacts of a node in A ∪ C.
Route the message to x, along the shortest path in A ∪ C to x.

3. Final step (Kleinberg’s greedy algorithm): Forward the message to
the closest node towards the target among the (local or long-range) contacts
of its current holder, until it reaches the target t.

Figure 2 illustrates the notations used in the algorithm described in the
frame above. A is the set of the nodes explored. The links followed during any



exploration step map a non-overlapping (1 + k)-ary tree structure of height
hstop ≤ hmax(x) on A, whose set of leaves is Bhstop , and extended by |Bhstop | ≤
bmax(x) chains of length g(x), rooted on the nodes in Bhstop , pointing towards
the target. The set Bh is the set of nodes at level h in the tree structure mapped
on A. A may as well be seen as a set of |F | = |Bhstop | non-overlapping chains of
length ≤ hmax(x) + g(x) rooted on the nodes in F , pointing towards the target,
connected one to the other by a tree structure of long range links.

Bh

A

Bh

C

F

x

hstop ≤ hmax(x)

g(x)

stop

Fig. 2. The sets A, Bh, C and F (the nodes in white) during an exploration step.

Map of the proof. We will show that at the end of any exploration step, with con-
stant probability, the message is routed to a node at lattice distance ≤ log(1+k)

2k x
from the target, where x is the lattice distance of the message at the beginning
of the exploration step (Proposition 3, from which we deduce Theorem 1). In
order to prove Proposition 3, we show that with constant probability, there are
at least Ω( log n

log(1+k) ) nodes in C, whose long range contacts have not yet been
explored (Lemma 7). Combined with Lemma 4, this yields Proposition 3. The
proof of Lemma 7 consists in showing that the number of branches in the tree
structure of A is large enough. This is ensured by lower bounding the probability
that a new non-overlapping branch is created (Corollary 6), and then carefully
tuning hmax(x) and g(x) to realize a trade-off between limiting overlapping and
maximizing the tree growth to minimize its height. The size of the tree is then
lower bounded by the growth of a branching process, which concludes the result.

Proposition 3. There exist two constants p1 > 0 and n0, independent of n and
x, such that, for n ≥ n0, at the end of any exploration step, with probability
≥ p1, there is a node u in A ∪C such that u or one of its long-range contact is
at distance ≤ log(1+k)

2k x from the target.

The following lemma is directly inspired from [10]; its proof is omitted.

Lemma 4. Given γ > 0, there is a constant p2 > 0, such that, for any subset
Γ of γ · log n

log(1+k) vertices at lattice distance in ( log(1+k)
2k x, x] from the target, one

vertex in Γ (at least) has a long-range contact at lattice distance ≤ log(1+k)
2k x to

the target, with probability at least p2.



The next lemma will be used to lower bound the probability of creating a
new non-overlapping branch in A.

Lemma 5. Let u be a node at lattice distance u from the target t, v its j-th long-
range contact, Q a set of q forbidden nodes, and r an integer. The probability
that v is good and at lattice distance ≥ r from any node of Q, is ≥ (H2u−1 −
H2rq−1)/(2Hn).

Proof. Let E be the event that v is good and is at distance ≥ r from any node of
Q. E is the event that v is good and does not belong to the any of the q chains
of nodes of length 2r centered on the nodes of Q. We bound the probability of
E by noticing that the probability that v is at distance δ from u is decreasing
with δ. Therefore, the probability of E is minimized when the nodes in the q
chains are all distinct, in the interval of nodes of radius u− 1 around the target,
and as close as possible to u, according to the lattice distance. A simple case
analysis (depending on whether u ≤ n/2, or n/2 ≤ u ≤ n − rq, or u ≥ n − rq)
shows that the probability of E is then greater than the probability that v is
at distance ≥ 2rq from u, and is at distance < u from the target. We conclude
that: Pr E ≥ 1

2Hn

∑2u−1
i=2rq

1
i = H2u−1−H2rq−1

2Hn
.

Corollary 6. There exists a constant n0 independent of x, n, and k, such that if
n ≥ n0, during any exploration step, for any unvisited node u at lattice distance
u > log(1+k)

2k x from the target, the probability αu that the j-th long range contact
v of u, is good and is at lattice distance ≥ hmax(x) + g(x) from any node in F ,
is greater than Hx/(6Hn) =def α−.

Proof. F contains less than bmax(x) nodes. By Lemma 5, αu ≥ (H2u−1 −
H2bmax(x)(hmax(x)+g(x))−1)/2Hn. But hmax(x) ≤ 6Hn

Hx

log log x
log(1+k) ≤ 6g(x) and

bmax(x)g(x) = log n, thus: αu ≥ H2u−1−H16 log n

2Hn
≥ ln( 2u−1

16 log n )/(2Hn). Since
x > k log2 n and k ≤ log n, we have x

k < x1/3 log n and ln
(

2u−1
16 log n

)
>

ln
( log(1+k)·x/k−1

16 log n

)
> Hx1/3 ≥ 1

3Hx, for n ≥ n0, for some constant n0 inde-
pendent of x, n, and k. We conclude that αu ≥ Hx/(6Hn).

The following lemma shows that at the end of any exploration step, with
constant probability, either we have already reached a node in A∪C at distance
≤ log(1+k)

2k x from the target, or the tree is wide enough to contain the required
number of nodes to apply Lemma 4.

Lemma 7. There exists a constant p3 > 0, independent of n and x, such
that, at the end of any exploration step, with probability at least p3, either
there exists a node in A at lattice distance ≤ log(1+k)

2k x from the target, or
|Bhstop | ≥ log x/(2 log log n).

Proof. Let E the event that at the end of the exploration step, there exists
a node in A at lattice distance ≤ log(1+k)

2k x from the target, or |Bhstop | ≥
log x/(2 log log n).



Let Z = {z : δ(z, t) > log(1+k)
2k x} and Z̄ its complementary set. By Corol-

lary 6, during any exploration step, for every unvisited node u ∈ Z, for all
1 ≤ j ≤ k, the probability that the j-th long range contact of u is good and
at lattice distance ≥ hmax(x) + g(x) of any node in the current F , is at least
α−. Thus, as long as nodes in Z are considered, each of their long range contact
will be added to Bh+1 with probability ≥ α−. As soon as a node u from Z̄
is inserted in Ah, for some h, the probability that, for a given j, its j-th long
range contact is good and at lattice distance ≥ hmax(x) + g(x) of any node in
the current F , is no longer lower bounded by α−; but the event E is verified.
We use a probabilistic coupling argument to lower bound the probability of E ,
by virtually running the exploration step on a gadget network, constructed from
the original network as follows: this gadget network has the same underlying
lattice; the nodes in Z have the exact same links as in the original network; but
we consider a virtual link distribution for the nodes of Z̄ such that for every
unvisited node u, the probability that its j-th long range contact is good and at
lattice distance ≥ hmax(x) + g(x) from any set of nodes G of size ≤ bmax(x), is
α− (note that this distribution does not need to exist effectively). We run the
exploration step on this gadget network from the same x as in the real network,
except that we don’t interrupt it until h = hmax(x). It yields three sets fami-
lies (A′

h), (B′
h) and F ′, such that: Ah ∩ Z = A′

h ∩ Z, Bh ∩ Z = B′
h ∩ Z, and

F ∩Z = F ′ ∩Z, for all 1 ≤ h ≤ hstop. The links followed during the exploration
of the gadget network define a non-overlapping tree structure of height exactly
hmax(x) on A′ = ∪hA′

h where B′
h is the set of the nodes at level h. Let E ′ be the

event that |B′
hmax(x)| ≥ log x/(2 log log n). We now show that Pr{E} ≥ Pr{E ′}:

– If, in the original network, A ∩ Z̄ = ∅, then B′
hstop

= Bhstop . If hstop <

hmax(x), then |B′
hmax(x)| ≥ |B

′
hstop
| = |Bhstop | = bmax(x) = log x/ log log n,

and then E and E ′ are both verified. If hstop = hmax, Bhstop = B′
hmax(x) and

then E and E ′ are equivalent. Then, whatever the gadget network is inside
Z̄, Pr{E| A ∩ Z̄ = ∅} = Pr{E ′|A ∩ Z̄ = ∅}.

– If, in the original network, A ∩ Z̄ 6= ∅, then E is verified, so, whatever the
gadget network is inside Z̄, Pr{E|A ∩ Z̄ 6= ∅} = 1 ≥ Pr{E ′|A ∩ Z̄ 6= ∅}.

We now lower bound Pr{E ′}. The set A′ = ∪hA′
h is structured as a random

tree of root x, in which every node u at level h has, independently, a random
number 1+ l of children (one local contact and l long range contacts), where l is
given by a binomial law of parameters (k, αu), with αu ≥ α−. Thus the number
of nodes at level h, |B′

h|, stochastically dominates the random variable4 bh for
the number of nodes at level h in the following branching process: start with
one node; at step h, each node at level h − 1 is given, independently, exactly
1 + l children, with probability ρl =

(
k
l

)
(α−)l(1 − α−)k−l, where 0 ≤ l ≤ k.

Bounding the variance of bh (omitted), gives: E[bh] = (1+kα−)h and a constant
p3 > 0, independent of α− and h, such that, with probability at least p3, bh ≥
E[bh]/2. Then, since (1 + kα−)hmax(x) = log x/ log log n, Pr{E} ≥ Pr{E ′} =
Pr{|B′

hmax(x)| ≥ log x/(2 log log n)} ≥ p3.

4 i.e., for all z, Pr{|B′
h| ≥ z} ≥ Pr{bh ≥ z}.



Corollary 8. For n ≥ n0, at the end of any exploration step, with probability
at least p3, there is a node in A at lattice distance ≤ log(1+k)

2k x from the target or
there are more than log n

2 log(1+k) distinct nodes in C (where p3 is given by Lemma 7).

Combined with Lemma 4, Corollary 8 yields Proposition 3.

Proof. (of Theorem 1) W.l.o.g., the target is 0 and the source s is at lattice
distance s from 0. Let x denote the current message holder of the message and x
its lattice distance from the target. First recall that at the end of each exploration
step, the algorithm selects the closest node to the target among the local and
long-range contacts of A ∪ C, and that the set A ∪ C grows towards the target;
therefore, every exploration step visits unexplored nodes, and each exploration
step is independent of the previous ones.

Let T and U be the solutions to ( 2k
log(1+k) )

T = s and ( 2k
log(1+k) )

U = k log2 n.
Note that T ∼ log s/ log(1 + k) and U ∼ (2 log log n + log k)/ log(1 + k). We
decompose the execution ofA in T phases. The execution is in phase i, 0 ≤ i ≤ T ,
as long as ( 2k

log(1+k) )
i−1 < x ≤ ( 2k

log(1+k) )
i. We say that an exploration step in

phase i succeeds if it leads to a phase ≤ i− 1. Let Yi and Zi be respectively the
random variables for the number of visited nodes in phase i, and for the length
of the path along which the message is routed in phase i.

Suppose that we are in phase i, with T ≥ i > U , then x > k log2 n. According
to Proposition 3, each exploration step succeeds with probability ≥ p1. Each
exploration step visits ≤ (hmax(x) + g(x)) bmax(x) ≤ 7g(x)bmax(x) nodes, and
routes the message, along a path of length ≤ hmax(x) + g(x) ≤ 7g(x) towards
the target. Then, E[Yi] ≤ 7g(x)bmax(x)/p1 ≤ 7

p1

log n
log(1+k) and E[Zi] ≤ 7g(x)/p1 ≤

7
p1

log n log log n
i log2(1+k)

, since log x ≥ i log(1 + k).

Once we reach a phase i ≤ U , we have x ≤ k log2 n and the algorithm runs
Kleinberg’s greedy algorithm. From [10], we know that this greedy computes a
path of expected length ≤ A(log n log x)/k ≤ 3A(log n log log n)/k while visiting
≤ 3A(log n log log n)/k nodes on expectation, for some constant A.

The expected length of the path from s to 0 computed by our algorithm is
bounded by:

T∑
i=0

E[Zi] ≤ 3A
log n log log n

k
+

7
p1

log n log log n

log2(1 + k)

∑
U<i≤T

1
i

= O

(
log n

(
log log n

log(1 + k)

)2 )
.

And the expected number of nodes visited by our algorithm is bounded by:

T∑
i=0

E[Yi] = O

( (
log n

log(1 + k)

)2 )
.

For the last of each exploration step, our algorithm just needs Θ
(
log n ·

(bmax(x) + hmax(x) + g(x))
)

= O(log2 n/ log(1 + k)) bits of memory. Indeed,



each node address requires log n bits, and each exploration step needs only to
store: the address of the target, the address of the nodes in F (whose size is
≤ bmax(x) = O(log n/ log log n) = O(log n/ log(1 + k))), the state of the stack
during the depth-first search of A ∪ C (whose height is bounded by hmax(x) +
g(x) = O(log n/ log(1+ k))), and both the address and the state of the stack for
the current best node y among A ∪ C and A ∪ C’s contacts.

4 d-dimensional network

In a d-dimensional network, d > 1, the underlying lattice is a d-dimensional
torus {−n, . . . , n}d. Each node u has k extra directed links (its long range
links) each one pointing towards a node v chosen independently according to
the d-harmonic distribution, i.e., with probability proportional to 1/δ(u,v)d.

We denote by S(u, r) and B(u, r), respectively the `1-sphere and `1-ball cen-
tered on u and of radius r. We denote by S(r) and V (r) their respective cardi-
nality. Clearly, for r ≤ n, S(r) = Θ(rd−1) and V (r) = Θ(rd). More precisely, for
r ≤ n, S(r) = 2d

(d−1)!r
d−1 + ξ(r), and V (r) = 2d

d! r
d + η(r), where ξ(r) and η(r)

are positive polynomials of respective degree d− 2 and d− 1. These expressions
are upper bounds on S(r) and V (r) when r > n.

The algorithm on a d-dimensional network. We only need to adapt the parame-
ters of the one-dimensional routing algorithm, as follows, and everything else in
the algorithm is unchanged: bmax(x) and g(x) are unchanged; hmax(x) is now set
to hmax(x) = (log log x− log log log n)/ log(1+ kHx

2d(2d+2)Hn
); and, the exploration

phases now stop as soon as x ≤ k log2d+1 n (the while condition Item 2), and
then the algorithm runs Kleinberg’s greedy algorithm.

Sketch of the analysis of the algorithm on a d-network. The analysis of the
algorithm is exactly identical to the one-dimensional case. Only the lower bound
on the probability of creating a new branch, α−, in the tree structure A∪C has
to be evaluated in order to get the result. Lemma 10 shows that for our choice
of the parameters bmax(x), g(x), hmax(x) and the while condition in Item 2, this
probability is again Θ(Hx/Hn), as in dimension 1, from which we get the result.

The next lemmas correspond to Lemma 5 and Corollary 6 in dimension 1;
their proofs rely on the geometry of the balls in dimension d, and are omitted.

Lemma 9. Let 1 ≤ j ≤ k, u a node at distance u ∈ ( log(1+k)
2k x, x] from the

target, v its j-th long-range contact, Q a set of q forbidden nodes, and r an
integer. The probability that v is good and at distance ≥ r from any node in Q,

is ≥
Hu−2dH

rq1/d−c1

2dHn+c2
, for two constants c1, c2 ≥ 0, that only depend on d.

Lemma 10. There exists a constant n1, independent of x, n, and k, such that if
n ≥ n1, during any exploration step, for any unvisited node u at lattice distance
u > log(1+k)

2k x from the target, the probability αu,d that the j-th long range contact



v of u, is good and is at lattice distance ≥ hmax(x) + g(x) from any node in F ,
is greater than Hx

2d(2d+2)Hn
=def α−d .

The properties of the tree structure on A ∪ C are then similar to dimension
1. Lemma 7, Property 3 and Theorem 1 follow then for any dimension d ≥ 1.

Conclusion. Our algorithm could possibly have interesting applications in peer-
to-peer networks, since its latency is comparable to Kleinberg’s greedy algorithm
and since it computes almost optimal paths based only on local information.
Note that, if we get a bound on the expected path length between random pair
of nodes, the question of the exact Kleinberg’s network diameter remains open.
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