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ABSTRACT
Cost-efficiency is a critical factor for citywide deployments of
WiFi networks that are being planned by telecom operators
and governments around the world. Building such networks
by reusing the broadband infrastructure, currently used only
by the mass costumer at home, is an attractive approach to
follow. We tackle the problem of selecting locations from
the existing broadband infrastructure to build such an over-
lay WiFi access network. We use an algorithm that solves
the budgeted version of the Maximum Coverage Problem to
select hotspot deployment points out of the available ones in
an area. These points represent premises of the broadband
customers where hotspots can be installed. The hotspots are
placed in such a way that the connectivity demand in the
given deployment area is satisfied at the lowest possible cost.
The proposed algorithm is assessed by simulations, applying
it to random and real datasets representing access demand,
geographical distributions, and locations where hotspots can
be deployed. The key findings of this study are: The con-
nectivity demand can be satisfied by the coverage at a cost
growing faster than linearly. In fact, the cost of covering the
first 85% of the demand is as much as 1/4 of the one needed
to satisfy it fully. Additionally, the current broadband pene-
tration in cities, like Berlin, makes WiFi access almost ubiq-
uitous with an average distance between nomadic users and
hotspots of 200 m.

∗Christopher Thraves is currently affiliated, as PhD student,
to the University Rey Juan Carlos in Spain.
†Pablo Vidales is member of the National System of Re-
searchers (SNI) in Mexico since January 2007.

1. INTRODUCTION
A new opportunity for achieving nearly ubiquitous wireless
access emerged from the exponential growth of home wire-
less networking. Broadband access penetration has been
constantly increasing in previous years, for example, in Eu-
rope there were 77 million DSL lines expected in 2007 [9].
Moreover, the production of WiFi chipsets encompasses the
demand for wireless connectivity, and 68 million shipments
of wireless devices were expected by the end of 2007 [6]. In-
ternet usage is also growing; an average user expends 48%
of her spare time on-line.

This growth in the popularity of WiFi-enabled devices gen-
erates a huge potential for wireless services and applications.
For this reason, industry and academia are working towards
practical solutions that would drastically change the way
to access the Internet on the move. Today, users are still
aware of the differences between fixed and mobile comput-
ing resources. In the future, the goal is to achieve equality in
terms of resources and transparent migration between both
worlds: wired and wireless.

There are some initiatives that are already tackling the chal-
lenges towards ubiquitous wireless Internet. For example,
many local governments are pushing the idea of offering city-
wide wireless access as part of the basic infrastructure, like
Paris [10], Berlin, and San Francisco (in the bay area, the
existing WiFi network was bought by a star-up company,
Meraki Networks [17], from Google). In the industry, there
are two different trends that are being followed. On the
one hand, telecom operators are expanding the coverage of
cellular-a-like wireless networks such as WiMax, EDGE, or
UMTS. On the other hand, small companies like Fon [15],
Whisher [16], and Sharefi [18] are proposing an alternative:
forming communities that share Internet access via WiFi-
enabled routers.

The latter enables a safe, low-cost option for nomadic users
to have wireless connectivity around urban areas. A previ-
ous approach that has been taken to offer this type of solu-
tion is the“guerrilla tactic”: building community-based wire-
less mesh networks. However, this has proven to be difficult



Figure 1: Map of a neighborhood in the city of
Berlin (Charlottenburg) that shows the potential lo-
cations (households with broadband access) in which
WiFi-enabled routers could be opened to nomadic
users (≈ 50km2)

to scale beyond certain size (e.g. campus-wide) and it re-
quires additional hardware and effort that someone needs to
add. As a counter option, operators are starting to collabo-
rate with commercial ventures, for example British Telecom
and Fon, to create these sharing communities boot strap-
ping from the home broadband access network [14]. The
idea behind:

To allow sharing broadband connections among private cus-
tomers and third parties (nomadic users) in a controlled and
secure way using WiFi-enabled routers, making better use of
underutilized broadband network capacity.

Two important factors for a successful deployment based
on this principle are: (a) cooperation with Internet Service
Providers (ISPs) that owned the access infrastructure, and
(b) control on the process of opening home routers to no-
madic users, in order to keep a low-cost and efficient de-
ployment of this virtual access-sharing overlay, on top of
the actual ISP network.

This paper describes the challenges of selecting locations
to open up the existing broadband connections for sharing,
so that the service demand of third parties (i.e., nomadic
users) is fulfilled in a cost-effective manner. In order to do
this, the following steps were performed: (1) formalize the
problem, (2) decide on the algorithm to model the problem,
(3) implement the algorithm, and (4) test the model with
different datasets.

The rest of the paper is organized as follows. Section 2
summarizes the relevant work done in the areas of network
planning algorithms and broadband sharing solutions. Sec-
tion 3 frames the formal description of the problem and the
algorithm chosen to solve it. Section 4 mentions the imple-
mentation details of the model, followed by Section 5 that
discusses the experiments performed to evaluate the solu-
tion, as well as the collected results. Finally, Section 6 in-
cludes conclusions and future activities.

2. RELATED WORK
The sharing approach towards enabling pervasive wireless
access in cities just loom, not much has been published on
this topic. However, this section includes work done on two
related areas. First, it summarizes the theory used to define
and solve the problem of deploying a virtual access overlay
on top of an ISP’s data network. Then, it includes some of
the published work on broadband sharing and community-
based approaches to provide connectivity.

Before the formalization of the problem and the selection
of an algorithm to solve it, a thorough review of previous
methods was done in order to decide the correct action path.
The work reported by Johnson in [5] and Khuller et al. in [8]
is of great relevance to this paper. Johnson introduced the
Set Covering Problem, which can be explained as: Given a
finite family F = {F1, F2, . . . , Fp} of sets, find a subset F ′

of F such that the union of elements in F ′ is equal to the
union of elements in F . The measure to minimize is the sum
of the cardinality of each element in F ′.

Khuller et al. in [8] described a budgeted version of the
Set Covering Problem, called Budgeted Maximum Coverage
Problem (BMCP), which associates a cost to each element in
F , and a weight for each element in the union of the elements
in F . Moreover, a budget B is added as a constraint. The
solution, again, is a subset F ′ of F where the total cost of
elements in F ′ does not exceed B, and the total weight of
elements covered by F ′ is maximized. Furthermore, Khuller
et al. presented an approximation algorithm to solve BMCP,
which achieves an approximation factor of (1 − 1/ε). Other
papers related to Covering Problems are [3, 7, 13].

In more practical terms, Amaldi et al. [1] tackled the prob-
lem of appropriate positioning of indoor WiFi access points
in order to achieve network effectiveness. The authors de-
scribe a similar approach to the one presented in this pa-
per. They use a greedy phase for selecting the routers to
be installed, and they also employ hyperbolic and quadratic
objective functions together with a local search phase while
considering network performance. However, the work di-
verts from the one in this paper in the following aspects.
First, in the case of [1] the hotspots can be installed after
planning for the optimum coverage, whereas in the present
scenario the hotspots need to be located in places provided
with a broadband connection. Second, Amaldi et al. target
indoor environments; the present paper describes an algo-
rithm that works for citywide scales. Last, this solution
considers various constraints such as budget and service de-
mand, while the work in [1] focuses on achieving optimum
network capacity by reducing interference.

The rest of this section discusses projects related to broad-
band sharing using WiFi technology. In these lines, Hakegard
et al. performed a thorough study of capacity and cover-
age of WiFi technology in broadband sharing scenarios, the
results are reported in [2]. The authors investigated the
possibility of providing open broadband wireless access us-
ing fixed broadband access lines (privately owned). This
scenario is the one assumed by the model described in this
paper. The paper concludes that it is feasible to provide out-
door coverage based on the concept of sharing households’
Internet access.



Solarski et al. [12] evaluated the performance of the IEEE
802.11 technology in urban environments, and analyzed the
impact of typical conditions such as inter-floor connectiv-
ity inside buildings, vertical height of the router’s location,
and indoor router’s location. Using the collected data, the
authors estimated the potential service range and capacity
when sharing broadband connections between home and no-
madic users.

Jon Crowcroft et al. [11] presented a mechanism to en-
able safe WiFi sharing with legitimate guests. The authors
described how to architect a citywide cooperative network
based on secure tunneling of the data. The authors discuss
some security concerns related to this type of deployments,
and they do not deal with the deployment challenges of such
a sharing overlay.

3. PROBLEM DEFINITION
In this section we present the mathematical formulation of
the problem of deploying a citywide WiFi network on top
of existing ISP broadband access networks, for the rest of
the paper Deployment Problem (DP). This section also
includes the algorithm selected to solve DP based on a re-
duction from DP to BMCP [8]. Informally, DP chooses the
best places (points) over a set of possible locations to open
up the broadband connections, where “best” means: the set
of points through which the deployment approximates to
satisfy, as close as possible, a predefined demand function.

3.1 Deployment problem
To define DP formally, we state some assumptions and def-
initions. The area covered by a WiFi-enabled broadband
device or router is assumed to be a circle. In addition, each
router has certain capacity that can be expressed in terms of
bandwidth, throughput, or users served. Hence, the 2-tuple
(rw, cw) is used to represent a router w and to denote its
coverage radius and service capacity, respectively.

In DP, the router characteristics (i.e., coverage radius and
service capacity) can be chosen from a finite set. Let R =
{(ri, ci)} be the finite set of different router types that can be
deployed. It is assumed that a router can be deployed only
in places with an existing broadband connection to Internet
(e.g. DSL connection, cable modem, etc.). Thus, a set of
possible points to deploy a router is part of the input to DP.
Let P = {p : p ∈ <2} be the set of possible points in which
routers can be set up. In the present case, it is assumed
that the size of R is smaller compared to the size of P , a
constant for the size of the input. This assumption is based
on the fact that there are fewer different combinations of
router characteristics used in commercial hardware. This is
a consequence of the existing standards and regulations in
the industry.

The total area that can be covered by an access sharing over-
lay network is defined using P and R. This area is defined
by the union of the biggest router (i.e., the circle with the
maximum radius) placed at each possible point. The total
area is the reachable area using P and R and is denoted by
P̆ . For the implementation, explained in the next section,
the smallest rectangle containing P̆ is used as the work area.

The service demand is defined as a function over P̆ , N : P̆ →
M, where M is a space with the same measure as the ser-
vice capacities of the routers, e.g., bandwidth, throughput,
served users, etc., and N(p) represents the service demand

in point p ∈ P̆ . Since for the implementation, the work area
is defined as the smallest rectangle that contains P̆ , N is
defined over this rectangle with N(p) = 0 when p is not in

P̆ but in the work area. Moreover, there is a cost function C
defined over PXR that for each pair (p, w) of a point p ∈ P
and a router w ∈ R, C(p, w), assigns the cost to deploy w
in p.

A deployment D is defined as a set of pairs (p, w), point and
router, where the pair (p,w) means that router w is placed
at point p. The cost of a deployment D is the sum of the
cost of each pair in D, i.e., C(D) =

P

(p,w)∈D
C(p,w), where

C(D) denotes the cost of D.

The service capacity of a deployment in a given point is
the service offered by the deployment at that particular lo-
cation. Formally, it is say that router w placed at point
p covers point q if the distance between p and q is smaller
than w’s coverage radius rw. The service capacity of deploy-
ment D at point p is the sum of the capacities of all routers
in deployment D that cover point p. Let D(p) denote the
service capacity of D in p. Then, the service capacity of a
deployment is the surface generated by its service capacity
in each point of the total area, i.e., the service capacity of
D is the function D : P̆ → M, where D(p) is the service
capacity of D at point p.

The problem is constrained by a budget B, consequently,
the cost of a deployment must be smaller than the budget in
order to represent a potential solution to the problem. The
goal of DP is to find a deployment restricted by the budget
with a service capacity that matches, as close as possible,
the service demand. This means to find the deployment
that minimizes

R

P̆
max{N(p)−D(p), 0}dp among those with

C(D) ≤ B.

The statement of the Deployment Problem (DP) is as fol-
lows:

Input:

• Set P = {p : p ∈ <2} of possible points.

• Set R = {(r, c) : r ∈ <, c ∈ M} of different types of
routers.

• Demand function N : P̆ → M.

• Cost function C : PXR → <.

• Budget B ∈ <.

Output:

A deployment D = {(p, w) : p ∈ P, w ∈ R} in which

C(D) =
P

(p,w)∈D C(p, w) ≤ B

and that minimizes
R

P̆
max{N(p) − D(p), 0}dp.



3.2 Solving the Deployment Model
The Budgeted Maximum Coverage Problem (BMCP) [8] is
used to solve DP. The BMCP is defined as follows: A col-
lection of sets F = {F1, F2, . . . , Fm} with associated costs
{ci}

m
i=1 is defined over a domain X = {x1, x2, . . . , xn} of

elements with associated weights {wi}
n
i=1. The goal is to

find a collection of sets F ′ ⊆ F , such that the total cost in
F ′ does not exceed a given budget B, and the total weight
of elements covered by F ′ is maximized. In the statement
of DP the uncovered service demand is minimized, which
is equivalent to the BMCP maximization, the total weight
covered.

In order to transform an instance of DP into an instance
of BMCP, the input of DP is transformed into an input of
BMCP. Thus, DP may be solved using the algorithm pro-
posed by Khuller et al. in [8] to solve BMCP. The trans-
formation builds an equivalent set F in BMCP from P and
R in DP. The weights are given by the demand function N
and the costs by the cost function C.

Algorithm 1 Solve DP:

Generate F from P and R;
G → {∅}; C → 0; U → F ;
while U 6= {∅} do

Select Fi in U that maximizes 1
C(Fi)

R

Fi

max{N(p) −

D(p), 0}dp
if C + C(Fi) ≤ B and

R

Fi

max{N(p) − D(p), 0}dp > 0

then
G → G

S

Fi

C → C + C(Fi)
end if
U → U\Fi

end while
OUTPUT G

The construction goes as follows: for each pair (p,w) in
PXR generate an element in F defined by the region covered
by w placed at p. Since it is assumed that the size of R is
a constant, this mapping does not increase the size of the
input—F is linear with respect to the size of P . Thus, the
solution proposed by Khuller et al. can be applied to solve
DP (see Algorithm 1 for the pseudo-code).

4. ALGORITHM IMPLEMENTATION
The implementation was designed following procedural pro-
gramming techniques because the use of functions, variables,
and modules simplify the implementation of algorithms com-
ing from a mathematical context. The following software
and hardware was used during the implementation and eval-
uation of the algorithm: MATLAB 7.03 running on a IBM
personal computer with an Intel Pentium M processor 1.86
GHz and 1.00 GB of RAM.

Figure 2 shows the flow chart of the algorithm showing the
main functions and the execution sequence. The first two
steps (1)(2) of the algorithm load the input variables, de-
scribed in Section 3, and estimate the total demand that
can be covered in the case that all routers were opened to
third-parties. This is calculated by adding the coverage area
that each router w ∈ R, placed at point p ∈ P , covers inside
the demand area N . The coverage area and service capac-

Figure 2: Flow chart

ity of each router vary according to different factors such as
interference generated from the environment, position with
respect of the user, and number of users connecting to the
network. These factors might be represented in the input
by using different router characteristics.

Step (3) computes for each pair (p, w) the integral

1

C(p, w)

Z

F (p,w)

max{N(q) − D(q), 0}dq,

where F (p, w) represents the circle covered by w placed at
p. This calculation gives the ratio between the new demand
and the cost.

A first implementation of the algorithm, using the quadratic
functions available in MATLAB, demanded an extremely
high computational effort, which in the experiments trans-
late into several days of processing due to the global-scale
(citywide) of the access network being deployed. To enhance
this situation, the work area described in Section 3 was de-
fined using a mesh grid with x and y ranges representing



 
 

Figure 3: Example of an input for the algorithm:
Set of possible points in a random city

axis coordinates. The demand N , as well as the possible
points p with their respective coverage area, were mapped
to the work area and saved into files. Then, it was pos-
sible to use matrices to compute the described operations
and the computational time decreased from days to hours.
Furthermore, the mesh grid allows changing the precision of
the integral, and as the processing time increases with the
precision, a mesh grid enables to manage the computational
time by adjusting this setting.

In step (4) the budget is calculated. In general the budget is
an input of the problem, however, in the performed experi-
ments (discussed in Section 5) a standard budget depending
on the rest of the inputs is computed(see Equation (1)).

After obtaining the budget in step (4), the main loop be-
gins. The next three steps (5)(6)(7) reduce the budget by
the cost of the previous deployment (5), select the 2-tuple
(p, w) with the greatest ratio and add this tuple to a final
output list (6), and modify the demand function N accord-
ingly (7), reducing this function in the area covered by the
selected router w placed at p. Since the demand function
N is modified, the calculation of the ratio between the de-
mand covered and the cost of deploying the routers has to
be updated (step (3) is executed one more time).

When the loop ends, an estimation of the remaining area
to be covered is computed, as well as the total cost of the
solution. The final ratio of coverage ((T −R)/T , where T is
the total demand that can be covered and R the remaining
demand) is also computed. In the final step (11) the algo-
rithm returns the output list with the chosen points for the
deployment.

5. EXPERIMENTS AND RESULTS
This section includes the discussion on the experiments per-
formed in order to evaluate the implementation described in
Section 4, and it is twofold. The first part includes the inputs
of the experiments such as cost function, demand function,
budget, and distribution of broadband connections. The sec-
ond part presents the results and includes a discussion on
the main findings.

Figure 4: Output of the algorithm deployment using
the real locations dataset as the input. The figure
shows the final area covered using the algorithm de-
ployment.

5.1 Simulations
Some experiments were designed to understand the behav-
ior of cost versus efficiency (cost-efficiency) in a certain de-
ployment as a result of the algorithm 1. These experiments
were repeated several times and only the budget changed
(increased) in each iteration. After every run the ratio be-
tween the demand covered by the solution and the total
demand that could be covered was computed. This process
was repeated until the total demand was completely fulfill,
or the ratio was equal to 1.

An input set is composed of five parts: the set of possible
points, the set of different router characteristics, the demand
function, the cost function, and the budget. Two different
input sets were employed to test the implementation; these
are called real city and case city. The corresponding set of
possible points are shown in figures 1 and 3, respectively.

The budget B is defined in both cases as follows:

B = c(T/w̄)C (1)

where T represents the total demand that can be covered
by running the algorithm, w̄ is the average service capacity
covered by the routers in R, and C is the average deployment
cost of a router. Finally, c is the variable factor used to
increase the budget evenly, and it is called over provisioning
factor. Notice that when c ≥ 1 the algorithm has enough
budget to give a solution that fully covers the demand (if
this is geographically possible), and when c < 1 the solution
restricted by the budget cannot fulfill the complete service
demand.

For both input sets, the cost is defined equal to 1. Hence,
in Equation (1) C constant value is 1. The rest of the com-
ponents are detailed for each input set in the next section.

Case city
The first type of input was randomly generated; it is called
case city. A case city is expressed as follows: a [0, 1] × [0, 1]
square is defined as the work area, representing 1 km2. Over



Figure 5: Over provisioning in a broadband sharing scenario.
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(a) Random Data
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(b) Real Data

this square random streets are described, each one limited
by a line between two random points chosen in opposite
borders of the square. A set of possible points (192 points)
was randomly selected over the random streets (Figure 3).

The demand function N is defined using random streets.
Over each random street a service demand is associated with
a particular behavior. As the deployment intends to rep-
resent a citywide network, it is assumed that the demand
grows on the sidewalks’ area, and it decreases closer to the
buildings and to the traffic areas. To represent this, the sum
of two Gaussian distributions is utilized along the streets;
each peak demand is placed at one of the two sidewalks of a
street. The sides of the distributions represent the possible
buildings or the traffic zone of a street. The final demand
function is the sum of the demands across all the random
streets. As a simplification, only one type of router with
radius 0.04 and capacity 0.5, modeling 40 m and 5 Mbps,
was deployed.

The experiment was done using 6 different sets of random
points. For each run, the value of the over provisioning
factor was increased starting from 0.3 and adding 0.03 to
the value in each iteration. The process was repeated until
the solution given by the algorithm completely fulfilled T
(total service demand). Figure 5(a) shows the output of
these experiments, these results will be discussed in the next
section.

Real city
The second dataset applied to evaluate the algorithm con-
tains data points describing the real distribution of broad-
band connections in the neighborhood of Charlottenburg,
Berlin. The data includes completely anonymous geograph-
ical locations of over 41, 000 DSL-lines that represent the
set of possible points for the algorithm (see Figure 1). To
select the set of possible points the following selection crite-
rion was applied: only the routers located in the lower floors
and close to a window are useful to provide outdoor coverage
(see urban WiFi evaluation in [12]). This lead to a number
of 7, 161 possible points in the Charlottenburg zone.

To make the simulation as realistic as possible, the service
demand is computed using the information collected from
a collocated cellular network (over the same geographical
area), and it is based on the IP traffic data gathered from
the cellular base stations. The demand function is formu-
lated inside a particular coverage zone surrounding the base
stations, which can include more than one possible point
(router). The total IP traffic (data services) of each base
station is assigned to this zone as the correspondent total
demand. The reasoning behind it is that a good starting
point to estimate the future demand of nomadic users in
a citywide WiFi network can be the current data services
usage in cellular networks.

For this experiment a set of router characteristics is defined
using four different radius (29 m, 47 m, 53 m, 59 m) and four
different service capacities (1000 kbps, 2000 kbps, 6000 kbps,
16000 kbps). The radius were defined based on the standard
ITU −RM.1225 for pedestrian outdoor environments [4] in
order to obtain the maximum coverage distance of an stan-
dard router. This coverage distance depends on the Line-
Of-Sight (LOS) between the router and nomadic users and
the materials of the obstacles in between. Thus, the cov-
erage model was calculated for different materials, and four
were randomly selected for these experiments. Moreover,
several indoor locations were considered for the router, af-
fecting the LOS component (based on the study published in
[12]). The remaining router characteristics were taken from
existing commercial technical specifications.

Finally, the total capacity was calculated based on average
speeds for broadband DSL connections. standard speed for
DSL lines. When all these elements were compute, a 2-tuple
of radius and capacity was associated to each point p ∈ P .
In these runs, the over provisioning factor increases 0.01 ev-
ery iteration, and the initial value was set to 0.1. Intuitively,
c = 1 means that there are enough “resources” to fulfill the
total demand, when there is no coverage overlapping among
the hotspots installed.



To validate the efficiency of the algorithm deployment, the
solution is compared to a random deployment. The latter
implies that the sharing overlay network is built by opening
up routers in random locations within a specific area, with-
out any sort of control on the process. In these simulations
both, the random deployment and the algorithm deployment
select the same amount of routers to share the broadband
connection. The results are discussed in the next section.

5.2 Over provisioning
Figures 5(a) and 5(b) show the outcome of the experiments
using case city and real data as inputs, respectively. The X-
axis represents the over provisioning factor and Y -axis the
percentage of covered demand. The dots represent the re-
sults of an algorithm deployment and the crosses the results
of a random deployment.

Figure 5(a) shows that when modeling a case city (based on
the rules mentioned in Section 5.1) the resulting deployment
fulfills the total demand when the over provisioning factor is
equal to 2. A random deployment covers only around 85%
of the demand at the same c factor value. For the case of the
real dataset (i.e., Charlottenburg), Figure 5(b) shows that
the total demand is covered for an over provisioning equal
to 5 while, again, a random deployment covers around 85%
for the same over provisioning.

A possible reason for the difference between the final over
provisioning factors in both cases can responded to the den-
sity of the set of possible points. For example, in the case
city the density of possible points is lower than in the real
city, conducting to a more efficient use of the routers. In a
scenario with lower density, the overlapping of two routers
(in terms of coverage) is less. From figures 5(a) and 5(b), it
can be observed that the deployment cost grows faster than
the percentage of demand covered.

5.3 Average distance
Even when the goal of the present method is not to cover
an area in terms of extension, it is interesting to analyze the
algorithm from the angle of coverage efficiency. Therefore,
the minimum and average distances between any point and
a location within WiFi coverage are calculated. In order
to do this a new grid with a density 10 times bigger than
the main grid is created and the distance from each of its
points to the covered area is computed. This computation
is repeated varying the budget B when increasing the value
of the over provisioning factor.

Figure 6 shows that for evaluating distances the algorithm
deployment has a similar behavior compared to a random
deployment. The dots show the average distance using the
algorithm and the crosses show the average distances using
a random deployment. For these experiments the work area
was a rectangle of approximately 50 km2, and the possible
deployment locations were given by the real dataset (see
Figure 1) of DSL locations in Berlin.

The deployments based on the described algorithm have a
minimum average distance of ∼ 200 m, whereas for random
deployments the minimum average distance is around 173
m. It is correct to assume that when c = 0.34 the random
deployment has reached its minimum average distance, while
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Figure 6: Average distance in random vs. DP de-
ployments using the real DSL distribution dataset.

for the same over provisioning factor the solution obtained
using Algorithm 1 has an average distance equal to 365 m.

This can be explained due to the fact that this algorithm is
design to cover demand, not to maximize the wireless cover-
age. This means that if a certain point has a high demand,
then the algorithm will deploy many routers in the same lo-
cation, until the demand is fulfilled as much as possible. In
the case of random deployments, routers are installed in ran-
dom points independently of the local demand. For exam-
ple, in the case of an over provisioning factor equals to 0.34,
the random deployment has reached its minimum average
distance, covering less demand than the solution obtained
using Algorithm 1.

Moreover, Figure 6 also shows that for the Charlottenburg
area the average distance to the nearest hotspot is around
200 m, even when increasing the over provisioning. Thus, a
nomadic user walking in this area could access the Internet
by reaching the nearest hotspot within 180 s, considering
the typical walking speed of 5 km/h.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown that citywide deployments of
WiFi networks can be driven with the correct tools that as-
sist network engineers in this challenging task —to achieve
the needed cost-effectiveness during the installation. It is
shown that this deployment problem can be tackled using
a modification of the well-known BMCP algorithm. An im-
plementation of this version of the BMCP algorithm was
programmed and evaluated using different input sets. As a
result of the evaluation experiments, the following conclu-
sions were drawn:

• The deployment cost grows faster than linearly with
respect to the percentage of demand covered.

• Covering the area where there is some connectivity de-
mand is not enough to cover the total connectivity
demand. In fact, covering the area with the demand
fulfills less than 40% of the total demand in the studied
real city and 50% in the randomly-generated city.



• Covering 99% or more connectivity requires a budget
that is a few times higher than the budget needed to
offer some connectivity in an area. In fact for this
study, it is the factor of 2 for the random city and the
factor of 4 for the real city.

• The average distance to the nearest hotspot in the de-
ployment area, covered only where connectivity exists,
stays around 200 m. Consequently, the nomadic user
can access Internet by reaching the nearest hotspot
within 160 s walking at a typical speed of 5 km/h.
Nevertheless, the complete service demand is not ful-
fill.

The intended future work includes further development of
the current model implementation to build a user-friendly
software tool. Even though the main functionality is to lo-
cate a set of suitable places to deploy routers, this tool could
provide more information. For instance, the application may
compute the minimum, maximum, or average distance from
any point in the region to a place with WiFi access, and
this information can be used to develop location-based mo-
bile services. Other useful data that the application could
provide is to select the most appropriate characteristics of
routers for a specific deployment.

In terms of the algorithm special additions are proposed for
future versions. Overall the input of the algorithm could be
conveniently modified to improve results. The existing in-
terference in the network generated by the fixed broadband
access lines might be estimated, thus, modifying the cov-
erage and capacity values of the routers while maintaining
independence with its main flow.

The objective function could be modified as it pursues a de-
ployment where the given demand area is satisfied at the
lowest possible cost; a modified objective function will im-
prove the results in particular scenarios, assigning, for ex-
ample, greater importance to a certain zone of the demand
that must be covered.

In terms of visualization, the goal is to show the results in
real maps mapping geographical coordinates into the simu-
lation grid. The demand could be seen in a 3D graphical
application, in which the fulfilled demand can be verified at
any point while the locations for the routers are selected.
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